

PyVISA-py: Pure Python backend for PyVISA

[image: PyVISA]
PyVISA-py is a backend for PyVISA [http://pyvisa.readthedocs.org/]. It implements most of the methods
for Message Based communication (Serial/USB/GPIB/Ethernet) using Python
and some well developed, easy to deploy and cross platform libraries.

You can select the PyVISA-py backend using @py when instantiating the
visa Resource Manager:

>>> import pyvisa
>>> rm = pyvisa.ResourceManager('@py')
>>> rm.list_resources()
('USB0::0x1AB1::0x0588::DS1K00005888::INSTR')
>>> inst = rm.open_resource('USB0::0x1AB1::0x0588::DS1K00005888::INSTR')
>>> print(inst.query("*IDN?"))

That’s all! Except for @py, the code is exactly what you would write to
using the NI-VISA backend for PyVISA.

Currently Pyvisa-py support the following resources:

	TCPIP INSTR

	TCPIP SOCKET

	GPIB INSTR

	ASRL INSTR

	USB INSTR

	USB RAW

Note:
ASRL INSTR supports also URL Handlers like

	loop:// –> ASLRloop://::INSTR

	socket:// –> ASRLsocket://::INSTR

These entries will not be listed during the device discovery rm.list_resources().
For further details see https://pyserial.readthedocs.io/en/latest/url_handlers.html

You can report a problem or ask for features in the issue tracker [https://github.com/pyvisa/pyvisa-py/issues].
Or get the code in GitHub [https://github.com/pyvisa/pyvisa-py].

	Installation
	Ethernet resources: TCPIP INSTR/SOCKET

	Serial resources: ASRL INSTR

	GPIB resources: GPIB INSTR

	USB resources: USB INSTR/RAW

	How do I know if PyVISA-py is properly installed?

	Using the development version

	FAQ
	Are all VISA attributes and methods implemented?

	Why are you developing this?

	Are GBIP secondary addresses supported?

	Can PyVISA-py be used from a VM?

	Can PyVISA-py be used from a Docker container?

	Why not using LibreVISA?

	Why putting PyVISA in the middle?

Installation

Pyvisa-py is available on PyPI [https://pypi.python.org/pypi/PyVISA-py] and can be easily installed using pip:

pip install pyvisa-py

Pyvisa-py runs on Python 3.6+.

If you do not install any extra library pyvisa-py will only be able to access
tcpip resources. The following sections will describe what extra libraries you
need to install and how to configure them to use other resources.

Ethernet resources: TCPIP INSTR/SOCKET

Pyvisa-py relies on socket [https://docs.python.org/3/library/socket.html#module-socket] module in the Python Standard Library to
interact with the instrument which you do not need to install any extra library
to access those resources.

To discover VXI-11 devices on all network interfaces, please install
psutil [https://pypi.org/project/psutil/]. Otherwise, discovery will only occur on the default network
interface.

Discovery of both HiSLIP and VICP devices relies on mDNS [https://en.wikipedia.org/wiki/Multicast_DNS], which is a protocol for
service discovery in a local area network. To enable resource
discovery for HiSLIP and VICP, you should install zeroconf [https://pypi.org/project/zeroconf/].

The TCP/IP VICP protocol (proprietary to Teledyne LeCroy) depends on
the pyvicp [https://pypi.org/project/pyvicp/] package. You should install this package if you need to
use VICP.

Serial resources: ASRL INSTR

To access serial resources, you should install PySerial [https://pythonhosted.org/pyserial/]. Version 3.0 or newer
is required. No special configuration is required.

GPIB resources: GPIB INSTR

On all platforms, using GPIB resources requires to install a gpib driver.
On Windows, it is install as part of NI-VISA or Keysight VISA for example. On
MacOSX, you should install the NI-488 library from National instrument. On
Linux, you can use a commercial driver (NI) or the linux-gpib [http://linux-gpib.sourceforge.net/] project.

On Linux, linux-gpib [http://linux-gpib.sourceforge.net/] comes with Python bindings so you do not have to
install any extra library.
On all systems with GPIB device drivers, GPIB support is available through
gpib-ctypes [https://pypi.org/project/gpib-ctypes/].

You should not have to perform any special configuration after the install.

USB resources: USB INSTR/RAW

For USB resources, you need to install PyUSB [https://github.com/pyusb/pyusb]. PyUSB [https://github.com/pyusb/pyusb] relies on USB driver
library such as libusb 0.1, libusb 1.0, libusbx, libusb-win32 and OpenUSB
that you should also install. Please refer to PyUSB [https://github.com/pyusb/pyusb] documentation for more
details.

On Unix system, one may have to modify udev rules to allow non-root access to
the device you are trying to connect to. The following tutorial describes how
to do it http://ask.xmodulo.com/change-usb-device-permission-linux.html.

On Windows, you may have to uninstall the USBTMC-specific driver installed by
Windows and re-install a generic driver. Please check libusb’s guide [https://github.com/libusb/libusb/wiki/Windows#user-content-How_to_use_libusb_on_Windows] for more
details, but installing a WinUSB driver with Zadig [https://zadig.akeo.ie/] should be a good start.

Note that on Windows, devices that are already open cannot be detected and will
not be returned by ResourceManager.list_resources.

How do I know if PyVISA-py is properly installed?

Using the pyvisa information tool. Run in your console:

pyvisa-info

You will get info about PyVISA, the installed backends and their options.

Using the development version

You can install the latest development version (at your own risk) directly
form GitHub [https://github.com/pyvisa/pyvisa-py]:

$ pip install -U git+https://github.com/pyvisa/pyvisa-py.git

FAQ

Are all VISA attributes and methods implemented?

No. We have implemented those attributes and methods that are most commonly
needed. We would like to reach feature parity. If there is something that you
need, let us know.

Why are you developing this?

The IVI compliant VISA implementations available (National Instruments NI-VISA [http://ni.com/visa/] ,
Keysight IO Libraries [https://www.keysight.com/us/en/lib/software-detail/computer-software/io-libraries-suite-downloads-2175637.html], Tektronix TekVISA [https://www.tek.com/en/support/software/driver/tekvisa-connectivity-software-v420], etc) are proprietary libraries that only work on
certain systems. We wanted to provide a compatible alternative.

Are GBIP secondary addresses supported?

GPIB secondary addresses are supported in NI-VISA fashion, meaning that the
secondary address is not 96 to 126 as transmitted on the bus, but 0 to 30.

For expample, GPIB0::9::1::INSTR is the address of the first VXI module
controlled by a GPIB VXI command module set to primary address 9, while
the command module itself is found at GPIB0::9::0::INSTR, which is distinct
from a pure primary address like GPIB0::9::INSTR.

ResourceManager.list_resources() has become slower as a result,
as it now needs to check 992 addresses per GPIB controller instead of just 31.

For every primary address where no listener is detected, all
secondary addresses are checked for listeners as well to find, for example,
VXI modules controlled by an HP E1406A.

For primary addresses where a listener is detected, no secondary addresses are
checked as most devices simply ignore secondary addressing.

If you have a device that reacts to the primary address and has different
functionality on some secondary addresses, please leave a bug report.

Can PyVISA-py be used from a VM?

Because PyVISA-py access hardware resources such as USB ports, running from a
VM can cause issues like unexpected timeouts because the VM does not
receive the response. You should consult your VM manual to determine
if you are able to setup the VM in such a way that it works. See
https://github.com/pyvisa/pyvisa-py/issues/243 for the kind of issue
it can cause.

Can PyVISA-py be used from a Docker container?

As the Windows variant of Docker can forward neither USB ports nor GPIB
interfaces, the obvious choice would be to connect via TCP/IP. The problem of a
Docker container is that idle connections are disconnected by the VPN garbage
collection. For this reason it is reasonable to enable keepalive packets.
The VISA attribute VI_ATTR_TCPIP_KEEPALIVE has been modified to work
for all TCP/IP instruments. Enabling this option can be done with:

inst.set_visa_attribute(pyvisa.constants.ResourceAttribute.tcpip_keepalive, True)

where inst is an active TCP/IP visa session.
(see https://tech.xing.com/a-reason-for-unexplained-connection-timeouts-on-kubernetes-docker-abd041cf7e02
if you want to read more about connection dropping in docker containers)

Why not using LibreVISA?

LibreVISA [http://www.librevisa.org/] is still young and appears mostly unmaintained at this
point (latest release is from 2013).
However, you can already use it with the IVI backend as it has the same API.
We think that PyVISA-py is easier to hack and we can quickly reach feature parity
with other IVI-VISA implementation for message-based instruments.

Why putting PyVISA in the middle?

Because it allows you to change the backend easily without changing your application.
In other projects, we implemented classes to call USBTMC devices without PyVISA.
But this leads to code duplication or an adapter class in your code.
By using PyVISA as a frontend to many backends, we abstract these things
from higher level applications.

Index

 nav.xhtml

 Table of Contents

 		
 PyVISA-py: Pure Python backend for PyVISA

 		
 Installation

 		
 Ethernet resources: TCPIP INSTR/SOCKET

 		
 Serial resources: ASRL INSTR

 		
 GPIB resources: GPIB INSTR

 		
 USB resources: USB INSTR/RAW

 		
 How do I know if PyVISA-py is properly installed?

 		
 Using the development version

 		
 FAQ

 		
 Are all VISA attributes and methods implemented?

 		
 Why are you developing this?

 		
 Are GBIP secondary addresses supported?

 		
 Can PyVISA-py be used from a VM?

 		
 Can PyVISA-py be used from a Docker container?

 		
 Why not using LibreVISA?

 		
 Why putting PyVISA in the middle?

_images/logo-full.jpg
PyVISA

_static/plus.png

_static/file.png

_static/logo-full.jpg
PyVISA

_static/minus.png

