PyVISA Documentation
Release 1.6.3

PyVISA Authors

August 24, 2015

Contents

1 General overview 3
2 User guide 5
2.1 Installation oL L e e e e e e e e e e e 5
2.2 Configuring the NI backend e 6
23 Tutorial e e e 6
2.4 Reading and Writing values o e e e e e e e e e 8
2.5 Amorecomplexexample L e e 10
2.6 RESOUICES o i i e e e e e e e e 11
2.7 Afrontend for multiple backends L 13
2.8 PyVISA Shell e 14
2.9 Architecture i e e e e e e e e 16
3 More information 19
3.1 VISATEsource Names o vttt e e e e e e e e e e e e e e e e e e e 19
3.2 Migrating from PyVISA < 1.5 o 0o e 21
3.3 Contributing to PyVISA e 25
3.4 Frequently asked questions L L e 26
3.5 NI-VISAInstallation o o000 o e e e e e e 28
3.6 APL . . L 30
Python Module Index 139

PyVISA Documentation, Release 1.6.3

PyVISA

PyVISA is a Python package that enables you to control all kinds of measurement devices independently of the
interface (e.g. GPIB, RS232, USB, Ethernet). As an example, reading self-identification from a Keithley Multimeter
with GPIB number 12 is as easy as three lines of Python code:

>>> import visa

>>> rm = visa.ResourceManager ()

>>> rm.list_resources ()

("ASRL1::INSTR', 'ASRL2::INSTR', 'GPIBO::12::INSTR')
>>> inst = rm.open_resource ('GPIBO::12::INSTR")

>>> print (inst.query ("+*IDN?"))

(That’s the whole program; really!) It works on Windows, Linux and Mac; with arbitrary adapters (e.g. National
Instruments, Agilent, Tektronix, Stanford Research Systems).

Contents 1

PyVISA Documentation, Release 1.6.3

2 Contents

CHAPTER 1

General overview

The programming of measurement instruments can be real pain. There are many different protocols, sent over many
different interfaces and bus systems (e.g. GPIB, RS232, USB, Ethernet). For every programming language you want
to use, you have to find libraries that support both your device and its bus system.

In order to ease this unfortunate situation, the Virtual Instrument Software Architecture (VISA) specification was de-
fined in the middle of the 90ies. VISA is a standard for configuring, programming, and troubleshooting instrumentation
systems comprising GPIB, VXI, PXI, Serial, Ethernet, and/or USB interfaces.

Today VISA is implemented on all significant operating systems. A couple of vendors offer VISA libraries, partly
with free download. These libraries work together with arbitrary peripherical devices, although they may be limited
to certain interface devices, such as the vendor’s GPIB card.

The VISA specification has explicit bindings to Visual Basic, C, and G (LabVIEW’s graphical language). However,
you can use VISA with any language capable of calling functions in a shared library (.dll, .so, .dylib). PyVISA is
Python wrapper for such shared library ... and more.

PyVISA Documentation, Release 1.6.3

4 Chapter 1. General overview

CHAPTER 2

User guide

2.1 Installation

PyVISA is a frontend to the VISA library. It runs on Python 2.6+ and 3.2+.

You can install it using pip:

‘$ pip install -U pyvisa

2.1.1 NI Backend

In order for PyVISA to work, you need to have a suitable backend. PyVISA includes a backend that wraps the National
Instruments’s VISA library. However, you need to download and install the library yourself (See NI-VISA Installa-
tion). There are multiple VISA implementations from different vendors. PyVISA is tested only against National
Instruments’s VISA.

Warning: PyVISA works with 32- and 64- bit Python and can deal with 32- and 64-bit VISA libraries without
any extra configuration. What PyVISA cannot do is open a 32-bit VISA library while running in 64-bit Python (or
the other way around).

You need to make sure that the Python and VISA library have the same bitness

2.1.2 Testing your installation

That’s all! You can check that PyVISA is correctly installed by starting up python, and creating a ResourceManager:

>>> import visa
>>> rm = visa.ResourceManager ()
>>> print (rm.list_resources())

If you encounter any problem, take a look at the Frequently asked questions. There you will find the solutions to
common problem as well as useful debugging techniques. If everything fails, feel free to open an issue in our issue
tracker

2.1.3 Using the development version

You can install the latest development version (at your own risk) directly form GitHub:

http://www.pip-installer.org/
http://ni.com/visa/
http://ni.com/visa/
http://ni.com/visa/
http://ni.com/visa/
https://github.com/hgrecco/pyvisa/issues
https://github.com/hgrecco/pyvisa/issues
https://github.com/hgrecco/pyvisa

PyVISA Documentation, Release 1.6.3

‘$ pip install -U https://github.com/hgrecco/pyvisa/zipball/master

Note: If you have an old system installation of Python and you don’t want to mess with it, you can try Anaconda CE.
It is a free Python distribution by Continuum Analytics that includes many scientific packages.

2.2 Configuring the NI backend

Note: The NI backend requires that you install first the NI-VISA library. You can get info here: (NVI-VISA Installation)

In most cases PyVISA will be able to find the location of the shared visa library. If this does not work or you want to
use another one, you need to provide the library path to the ResourceManager constructor:

‘>>> rm = ResourceManager ('Path to library')

You can make this library the default for all PyVISA applications by using a configuration file called .pyvisarc
(mind the leading dot) in your home directory.

Operating System Location

Windows NT <root>\WINNT\Profiles\<username>

Windows 2000, XP and 2003 | <root>\Documents and Settings\<username>
Windows Vista, 7 or 8 <root>\Users\<username>

Mac OS X /Users/<username>

Linux /home/<username> (depends on the distro)

For example in Windows XP, place it in your user folder “Documents and Settings” folder, e.g. C:\Documents
and Settings\smith\.pyvisarc if “smith” is the name of your login account.

This file has the format of an INI file. For example, if the library is at /usr/lib/libvisa.so.7, the file
.pyvisarc must contain the following:

[Paths]

VISA library: /usr/lib/libvisa.so.7?

Please note that [Paths] is treated case-sensitively.

You can define a site-wide configuration file at /usr/share/pyvisa/.pyvisarc (It may also be
/usr/local/... depending on the location of your Python). Under Windows, this file is usually placed at
c:\Python27\share\pyvisa\.pyvisarc.

If you encounter any problem, take a look at the Frequently asked questions. There you will find the solutions to
common problem as well as useful debugging techniques. If everything fails, feel free to open an issue in our issue
tracker

2.3 Tutorial

Note: If you have been using PyVISA before version 1.5, you might want to read Migrating from PyVISA < 1.5.

2.3.1 An example

Let’s go in medias res and have a look at a simple example:

6 Chapter 2. User guide

https://store.continuum.io/cshop/anaconda
http://en.wikipedia.org/wiki/Home_directory
https://github.com/hgrecco/pyvisa/issues
https://github.com/hgrecco/pyvisa/issues

PyVISA Documentation, Release 1.6.3

>>> import visa

>>> rm = visa.ResourceManager ()

>>> rm.list_resources()

("ASRL1::INSTR', 'ASRL2::INSTR', 'GPIBO::14::INSTR')
>>> my_instrument = rm.open_resource ('GPIB0::14::INSTR")
>>> print (my_instrument.query ('+IDN?"))

This example already shows the two main design goals of PyVISA: preferring simplicity over generality, and doing it
the object-oriented way.

After importing visa, we create a ResourceManager object. If called without arguments, PyVISA will use the default
backend (NI) which tries to find the VISA shared library for you. You can check, the location of the shared library
used simply by:

>>> print (rm)
<ResourceManager ('/path/to/visa.so')>

Note: In some cases, PyVISA is not able to find the library for you resulting in an OSError. To fix it, find the
library path yourself and pass it to the ResourceManager constructor. You can also specify it in a configuration file as

discussed in Configuring the NI backend.

Once that you have a ResourceManager, you can list the available resources using the list_resources method. The
output is a tuple listing the VISA resource names.

In this case, there is a GPIB instrument with instrument number 14, so you ask the ResourceManager to open
“‘GPIB0::14::INSTR™’ and assign the returned object to the my_instrument.

Notice open_resource has given you an instance of GPIBInstrument class (a subclass of the more generic Resource).

>>> print (my_instrument)
<GPIBInstrument ('GPIB::14")>

There many Resource subclasses representing the different types of resources, but you do not have to worry as the
ResourceManager will provide you with the appropiate class. You can check the methods and attributes of each class
in the Resource classes

Then, you query the device with the following message: ‘“*/DN?’. Which is the standard GPIB message for “what are
you?” or — in some cases — “what’s on your display at the moment?”. query is a short form for a write operation to
send a message, followed by a read.

So:

>>> my_instrument.query ("+«IDN?")

is the same as:

>>> my_instrument.write ('+xIDN?")
>>> print (my_instrument.read())

2.3.2 Example for serial (RS232) device

Consider an Oxford ITC4 temperature controller, which is connected through COM2 with my computer. The following
code prints its self-identification on the screen:

itc4 = rm.open_resource ("COM2")
itcd.write ("V")
print (itc4.read())

2.3. Tutorial 7

PyVISA Documentation, Release 1.6.3

Instead of separate write and read operations, you can do both with one guery() call. Thus, the above source code is
equivalent to:

print (itcd.query ("V"))

It couldn’t be simpler.

2.4 Reading and Writing values

Some instruments allow to transfer to and from the computer larger datasets with a single query. A typical example is
an oscilloscope, which you can query for the whole voltage trace. Or an arbitrary wave generator to which you have
to transfer the function you want to generate.

Basically, data like this can be transferred in two ways: in ASCII form (slow, but human readable) and binary (fast,
but more difficult to debug).

PyVISA Message Based Resources have two different methods for this called query_ascii_values and
query_binary_values. It also has the convenient query_values which will use follow a previously established con-
figuration.

2.4.1 Reading ASCII values

If your oscilloscope (open in the variable inst) has been configured to transfer data in ASCII when the CURV? com-
mand is issued, you can just query the values like this:

>>> values = inst.query_ascii_values ('CURV?")

values will be list containing the values from the device.

In many cases you do not want a [ist but rather a different container type such as a numpy.array. You can of course
cast the data afterwards like this:

‘>>> values = np.array(inst.query_ascii_values ('CURV?"))

but sometimes it is much more efficient to avoid the intermediate list, and in this case you can just specify the container
type in the query:

‘>>> values = inst.query_ascii_values ('CURV?', container=numpy.array)

In container you can have any callable/type that takes an iterable.

Some devices transfer data in ASCII but not as decimal numbers but rather hex or oct. Or you might want to receive
an array of strings. In that case you can specify a converter. For example, if you expect to receive integers as hex:

>>> values = inst.query_ascii_values ('CURV?', converter='x")

converter can be one of the Python string formatting codes. But you can also specify a callable that takes a single
argument if needed. The default converter is f’.

Finally, some devices might return the values separated in an uncommon way. For example if the returned values are
separated by a ‘$” you can do the following call:

>>> values = inst.query_ascii_values ('CURV?', separator='S")

You can provide a function to takes a string and returns an iterable. Default value for the separator is ‘,” (comma)

8 Chapter 2. User guide

http://docs.python.org/2/library/string.html#formatspec

PyVISA Documentation, Release 1.6.3

2.4.2 Reading binary values

If your oscilloscope (open in the variable inst) has been configured to transfer data in BINARY when the CURV?
command is issued, you need to know which type datatype (e.g. uint8, int8, single, double, etc) is being used. PyVISA
use the same naming convention as the struct module.

You also need to know the endianness. PyVISA assumes little-endian as default. If you have doubles d in big endian
the call will be:

>>> values = inst.query_binary_values ('CURV?', datatype='d', is_big_endian=True)

You can also specify the output container type, just as it was shown before.

2.4.3 Writing ASCII values

To upload a function shape to arbitrary wave generator, the command might be WLISt: WAVeform:DATA <waveform
name>,<function data> where <waveform name> tells the device under which name to store the data.

>>> values = list (range(100))
>>> inst.write_ascii_values ('WLISt:WAVeform:DATA somename, ', values)

Again, you can specify the converter code.

>>> inst.write_ascii_values ('WLISt:WAVeform:DATA somename, ', values, converter='x")

converter can be one of the Python string formatting codes. But you can also specify a callable that takes a single
argument if needed. The default converter is f’.

The separator can also be specified just like in query_ascii_values.

>>> inst.write_ascii_values ('WLISt:WAVeform:DATA somename, ', values, converter='x", sep#rator:'$')

You can provide a function to takes a iterable and returns an string. Default value for the separator is ‘,” (comma)

2.4.4 Writing binary values

To upload a function shape to arbitrary wave generator, the command might be WLISt: WAVeform:DATA <waveform
name>,<function data> where <waveform name> tells the device under which name to store the data.

>>> values = list (range(100))
>>> inst.write_binary_values ('WLISt:WAVeform:DATA somename, ', values)

Again you can specify the datatype and endianness.

‘>>> inst.write_binary_values ('WLISt:WAVeform:DATA somename, ', values, datatype='d', is_#ig_endian:Fai

2.4.5 Preconfiguring the transfer format

Most of the cases, each device will transfer data in the same format every time. And making the call so detailed
everytime can be annoying. For this purpose, PyVISA provides a way to preconfigure the default. Each Message
Based Resources exposes an attribute named values_format which is an object with the following properties: is_binary,
datatype, is_big_endian, container. For example to set e.g. little-endian doubles and a numpy array:

2.4. Reading and Writing values 9

http://docs.python.org/2/library/struct.html#format-characters
http://docs.python.org/2/library/string.html#formatspec

PyVISA Documentation, Release 1.6.3

>>> inst.values_format.is_binary = True

>>> inst.values_format.datatype = 'd'

>>> inst.values_format.is_big_endian = False
>>> inst.values_format.container = numpy.array
or shorter:

‘>>> inst.values_format.use_binary('d', False, numpy.array)

After doing this, you can simply call:

’>>> inst.query_values ('CURV?")

which will dispatch to the appropriate function and arguments.

If you want to default to ASCII transfer, preconfiguring is a little bit more cumbersome as you need to specify the
converters for both ways.

For example with hex, with ‘$” as separator:

>>> inst.values_format.is_binary = False

>>> inst.values_format.converter = 'x'

>>> inst.values_format.separator = 'S’

>>> inst.values_format.container = numpy.array
or shorter:

>>> inst.values_format.use_ascii('x', 'S$', numpy.array)

This works for both query and write operations.

2.4.6 When things are not what they should be

PyVISA provides an easy way to transfer data from and to the device. The methods described above work fine for 99%
of the cases but there is always a particular device that do not follow any of the standard protocols and is so different
that cannot be adapted with the arguments provided above.

In those cases, you need to get the data:

>>> inst.write ('CURV?")
>>> data

inst.read_raw ()

and then you need to implement the logic to parse it.

2.5 A more complex example

The following example shows how to use SCPI commands with a Keithley 2000 multimeter in order to measure 10
voltages. After having read them, the program calculates the average voltage and prints it on the screen.

I’ll explain the program step-by-step. First, we have to initialise the instrument:

>>> keithley rm.open_resource ("GPIB::12")
>>> keithley.write ("+rst; status:preset; *cls")

Here, we create the instrument variable keithley, which is used for all further operations on the instrument. Immediately
after it, we send the initialisation and reset message to the instrument.

10 Chapter 2. User guide

PyVISA Documentation, Release 1.6.3

The next step is to write all the measurement parameters, in particular the interval time (500ms) and the number of
readings (10) to the instrument. I won’t explain it in detail. Have a look at an SCPI and/or Keithley 2000 manual.

>>> interval_in ms = 500

>>> number_of_readings = 10

>>> keithley.write ("status:measurement:enable 512; xsre 1")

>>> keithley.write ("sample:count " % number_of_readings)

>>> keithley.write("trigger:source bus")

>>> keithley.write("trigger:delay " % (interval_in_ms / 1000.0))
>>> keithley.write("trace:points " % number_of_readings)

>>> keithley.write ("trace:feed sensel; feed:control next")

Okay, now the instrument is prepared to do the measurement. The next three lines make the instrument waiting for a
trigger pulse, trigger it, and wait until it sends a “service request’:

>>> keithley.write("initiate™)
>>> keithley.assert_trigger ()
>>> keithley.wait_for_srqg()

With sending the service request, the instrument tells us that the measurement has been finished and that the results
are ready for transmission. We could read them with keithley.query(“trace:data?”) however, then we’d get:

-000.0004E+0,-000.0005E+0,-000.0004E+0,-000.0007E+0,
-000.0000E+0,-000.0007E+0,-000.0008E+0,-000.0004E+0Q,
-000.0002E+0,-000.0005E+0

which we would have to convert to a Python list of numbers. Fortunately, the query_ascii_values() method does this
work for us:

>>> voltages = keithley.query_ascii_values ("trace:data?")
>>> print ("Average voltage: ", sum(voltages) / len(voltages))

Finally, we should reset the instrument’s data buffer and SRQ status register, so that it’s ready for a new run. Again,
this is explained in detail in the instrument’s manual:

>>> keithley.query ("status:measurement?")
>>> keithley.write("trace:clear; feed:control next")

That’s it. 18 lines of lucid code. (Well, SCPI is awkward, but that’s another story.)

2.6 Resources

A resource represents an instrument, e.g. a measurement device. There are multiple classes derived from resources
representing the different available types of resources (eg. GPIB, Serial). Each contains the particular set of attributes
an methods that are available by the underlying device.

You do not create this objects directly but they are returned by the open_resource method of a ResourceManager. In
general terms, there are two main groups derived from Resource: MessageBased and RegisterBased.

The following sections explore the most common attributes of Resource and MessageBased (Serial, GPIB, etc) which
are the ones you will encounte more often. For more information, refer to the API.

2.6.1 Attributes Resource

session

Each communication channel to an instrument has a session handle which is unique. You can get this value:

2.6. Resources 11

PyVISA Documentation, Release 1.6.3

>>> my_device.session
10442240

If the resource is closed, an exception will be raised:

>>> inst.close()
>>> inst.session
Traceback (most recent call last):

pyvisa.errors.InvalidSession: Invalid session handle. The resource might be closed.

timeout

Very most VISA I/O operations may be performed with a timeout. If a timeout is set, every operation that takes longer
than the timeout is aborted and an exception is raised. Timeouts are given per instrument in milliseconds.

For all PyVISA objects, a timeout is set with

‘my_device.timeout = 25000

Here, my_device may be a device, an interface or whatever, and its timeout is set to 25 seconds. To set an infinite
timeout, set it to None or float(‘+inf”):

‘del my_device.timeout

To set it to immediate, set it to 0 or a negative value.

Now every operation of the resource takes as long as it takes, even indefinitely if necessary.

2.6.2 Attributes of MessageBase resources

Chunk length

If you read data from a device, you must store it somewhere. Unfortunately, PyVISA must make space for the data
before it starts reading, which means that it must know how much data the device will send. However, it doesn’t know
a priori.

Therefore, PyVISA reads from the device in chunks. Each chunk is 20 kilobytes long by default. If there’s still data

to be read, PyVISA repeats the procedure and eventually concatenates the results and returns it to you. Those 20
kilobytes are large enough so that mostly one read cycle is sufficient.

The whole thing happens automatically, as you can see. Normally you needn’t worry about it. However, some devices
don’t like to send data in chunks. So if you have trouble with a certain device and expect data lengths larger than the
default chunk length, you should increase its value by saying e.g.

my_instrument.chunk_size = 102400

This example sets it to 100 kilobytes.

2.6.3 Termination characters

Somehow the computer must detect when the device is finished with sending a message. It does so by using different
methods, depending on the bus system. In most cases you don’t need to worry about termination characters because
the defaults are very good. However, if you have trouble, you may influence termination characters with PyVISA.

12 Chapter 2. User guide

PyVISA Documentation, Release 1.6.3

Termination characters may be one character or a sequence of characters. Whenever this character or sequence occurs
in the input stream, the read operation is terminated and the read message is given to the calling application. The
next read operation continues with the input stream immediately after the last termination sequence. In PyVISA, the
termination characters are stripped off the message before it is given to you.

You may set termination characters for each instrument, e.g.

’my_instrument.read_termination = '"\r'

(‘r’ is carriage return, usually appearing in the manuals as CR)

Alternatively you can give it when creating your instrument object:

‘my_instrument = rm.open_resource ("GPIB::10", read_termination='\r'")

The default value depends on the bus system. Generally, the sequence is empty, in particular for GPIB. For RS232 it’s
r.

You can specify the character to add to each outgoing message using the write_termination attribute.

query_delay and send_end

There are two further options related to message termination, namely send_end and query_delay. send_end is a
boolean. If it’s True (the default), the EOI line is asserted after each write operation, signalling the end of the operation.
EOI is GPIB-specific but similar action is taken for other interfaces.

The argument query_delay is the time in seconds to wait after each write operation. So you could write:

my_instrument = rm.open_resource ("GPIB::10", send_end=False, delay=1.2)

This will set the delay to 1.2 seconds, and the EOI line is omitted. By the way, omitting EOI is not recommended, so
if you omit it nevertheless, you should know what you’re doing.

2.7 A frontend for multiple backends

A small historical note might help to make this section clearer. So bear with with me for a couple of lines. Originally
PyVISA was a Python wrapper to the VISA library. More specifically, it was ct ypes wrapper around the NI-VISA.
This approach worked fine but made it difficult to develop other ways to communicate with instruments in platforms
where NI-VISA was not available. Users had to change they programs to use other packages with different API.

Since 1.6, PyVISA is a frontend to VISA. It provides a nice, Pythonic API and can connect to multiple backends.
Each backend exposes a class derived from VisaLibraryBase that implements the low-level communication. The
ctypes wrapper around NI-VISA is the default backend (called ni) and is bundled with PyVISA for simplicity.

You can specify the backend to use when you instantiate the resource manager using the @ symbol. Remembering
that ni is the default, this:

>>> import visa
>>> rm = visa.ResourceManager ()

is the same as this:

>>> import visa
>>> rm = visa.ResourceManager ('@ni')

You can still provide the path to the library if needed:

2.7. A frontend for multiple backends 13

http://docs.python.org/2/library/ctypes.html#module-ctypes

PyVISA Documentation, Release 1.6.3

>>> import visa
>>> rm = visa.ResourceManager ('/path/to/lib@ni")

Under the hood, the ResourceManager looks for the requested backend and instantiate the VISA library that it pro-
vides.

PyVISA locates backends by name. If you do:

>>> import visa
>>> rm = visa.ResourceManager ('@somename’)

PyVISA will try to import a package/module named pyvisa-somename which should be installed in your system. This
is a loosly coupled configuration free method. PyVISA does not need to know about any backend out there until you
actually try to use it.

You can list the installed backends by running the following code in the command line:

python -m visa info

What does a minimum backend looks like? Quite simple:

from pyvisa.highlevel import VisalLibraryBase

class MyLibrary (VisalibraryBase):
pass

WRAPPER_CLASS = MyLibrary

Additionally you can provide a staticmethod named get_debug_info that should return a dictionary of debug informa-
tion.

2.8 PyVISA Shell

The shell, moved into PyVISA from the Lantz Project is a text based user interface to interact with instruments. You
can invoke it from the command-line:

python -m visa shell

that will show something the following prompt:

Welcome to the VISA shell. Type help or ? to list commands.

(visa)

At any time, you can type ? or help to get a list of valid commands:

(visa) help

Documented commands (type help <topic>):

EOF attr close exit help 1list open query read write

(visa) help list
List all connected resources.

Tab completion is also supported.

The most basic task is listing all connected devices:

14 Chapter 2. User guide

https://lantz.readthedocs.org

PyVISA Documentation, Release 1.6.3

(
(
(
(

\4

isa) list

0) ASRL1::INSTR
1) ASRL2::INSTR
2)

USBO::0x1AB1::0x0588::DS1K00005888::INSTR

Each device/port is assigned a number that you can use for subsequent commands. Let’s open comport 1:

(visa)
ASRL1::INSTR has been opened.
You can talk to the device using "write",

open 0

"read"

or "query.

The default end of message is added to each message

(open)
Some Instrument,

query *IDN?

Some Company.

We can also get a list of all visa attributes:

VI_ATTR_ASRL_ALLOW_TRANSMIT

VI_ATTR_ASRI_AVAIIL_ NUM
VI_ATTR_ASRL_BAUD
VI_ATTR_ASRL_BREAK_LEN
VI_ATTR_ASRL_BREAK_STATE
VI_ATTR_ASRL_CONNECTED
VI_ATTR_ASRL_CTS_STATE
VI_ATTR_ASRIL_DATA BITS
VI_ATTR_ASRL_DCD_STATE
VI_ATTR_ASRL_DISCARD_NULL
VI_ATTR_ASRIL_DSR_STATE
VI_ATTR_ASRL_DTR_STATE
VI_ATTR_ASRI_END_IN
VI_ATTR_ASRL_END_OUT
VI_ATTR_ASRL_FLOW_CNTRL
VI_ATTR_ASRI_PARITY
VI_ATTR_ASRI_REPLACE_CHAR
VI_ATTR_ASRL_RI_STATE
VI_ATTR_ASRI_RTS_STATE
VI_ATTR_ASRL_STOP_BITS
VI_ATTR_ASRL_WIRE_MODE
VI_ATTR_ASRI,_XOFF_CHAR
VI_ATTR_ASRL_XON_CHAR
VI_ATTR_DMA_ALLOW_EN
VI_ATTR_FILE_APPEND_EN
VI_ATTR_INTF_INST NAME
VI_ATTR_INTF_NUM
VI_ATTR_INTF_TYPE
VI_ATTR_IO_PROT
VI_ATTR_MAX_QUEUE_LENGTH
VI_ATTR_RD_BUF_OPER_MODE
VI_ATTR_RD_BUF_SIZE
VI_ATTR_RM_SESSION
VI_ATTR_RSRC_CLASS
VI_ATTR_RSRC_IMPL_VERSION
VI_ATTR_RSRC_LOCK_STATE
VI_ATTR_RSRC_MANF_ID
VI_ATTR_RSRC_MANF_NAME
VI_ATTR_RSRC_NAME
VI_ATTR_RSRC_SPEC_VERSION

+
|
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1073676734
1073676460
1073676321
1073676733
1073676732
1073676731
1073676462
1073676322
1073676463
1073676464
1073676465
1073676466
1073676467
1073676468
1073676325
1073676323
1073676478
1073676479
1073676480
1073676324
1073676735
1073676482
1073676481
1073676318
1073676690
3221160169
1073676662
1073676657
1073676316
1073676293
1073676330
1073676331
1073676484
3221159937
1073676291
1073676292
1073676661
3221160308
3221159938
1073676656

_—— - - = = = = = = e e e - - = — —

allow_transmit
bytes_in_buffer
baud_rate
break_length
break_state

data_bits

discard_null

end_input

parity
replace_char

stop_bits

xoff_char

xon_char

allow_dma

interface_number

io_protocol

resource_class
implementation_version
lock_state

resource_manufacturer_name
resource_name
spec_version

e e i i T

ASRL1

VI_EH

(/dev/q

Natior
AC

9600
250
0
ROR_NSUP_ATTI

P OO O0OO0OONRPE OO O o]

[
o

128

19

17

0

0
u.Bluetooth-]

1

4

1

50

3

4096
3160976
INSTR
5243392

0

4086
1al Instrument
RL1::INSTR
5243136

2.8. PyVISA Shell

15

PyVISA Documentation, Release 1.6.3

VI_ATTR_SEND_END_EN | 1073676310 | send_end [
VI_ATTR_SUPPRESS_END_EN | 1073676342 |
VI_ATTR_TERMCHAR | 1073676312 | [
VI_ATTR_TERMCHAR_EN | 1073676344 | [
VI_ATTR_TMO_VALUE | 1073676314 | [
VI_ATTR_TRIG_ID | 1073676663 | [
VI_ATTR_WR_BUF_OPER_MODE | 1073676333 |
VI_ATTR_WR_BUF_SIZE | 1073676334 | |
e B Fm Fom

Finally, you can close the device:

(open) close

Cool, right? It will be great to have a GUI similar to NI-MAX, but we leave that to be developed outside PyVISA.
Want to help? Let us know!

2.9 Architecture

PyVISA implements convenient and Pythonic programming in three layers:

1. Low-level: A wrapper around the shared visa library.

The wrapper defines the argument types and response types of each function, as well as the conversions between
Python objects and foreign types.

You will normally not need to access these functions directly. If you do, it probably means that we need to
improve layer 2.

All level 1 functions are static methods of VisaLibrary.

Warning: Notice however that low-level functions might not be present in all backends. For broader
compatibility, do no use this layer. All the functionality should is available via the next layer.

. Middle-level: A wrapping Python function for each function of the shared visa library.

These functions call the low-level functions, adding some code to deal with type conversions for functions that
return values by reference. These functions also have comprehensive and Python friendly documentation.

You only need to access this layer if you want to control certain specific aspects of the VISA library which are
not implemented by the corresponding resource class.

All level 2 functions are bound methods of VisaLibrary.

. High-level: An object-oriented layer for ResourceManager and Resource

The ResourceManager implements methods to inspect connected resources. You also use this object to open
other resources instantiating the appropriate Resource derived classes.

Resource and the derived classes implement functions and attributes access to the underlying resources in a
Pythonic way.

Most of the time you will only need to instantiate a ResourceManager. For a given resource, you will use the
open_resource method to obtain the appropriate object. If needed, you will be able to access the VisaLibrary ob-

ject directly using the visalib attribute.

The VisaLibrary does the low-level calls. In the default NI Backend, levels 1 and 2 are implemented in the same
package called ctwrapper (which stands for ctypes wrapper). This package is included in PyVISA.

16

Chapter 2. User guide

PyVISA Documentation, Release 1.6.3

Other backends can be used just by passing the name of the backend to ResourceManager after the @ symbol. See
more information in A frontend for multiple backends.

2.9.1 Calling middle- and low-level functions

After you have instantiated the ResourceManager:

>>> import visa
>>> rm = visa.ResourceManager ()

you can access the corresponding VisaLibrary instance under the visalib attribute.

You can recognize low and middle-level functions by their names. Low-level functions carry the same name as in the
shared library, and they are prefixed by vi. Middle-level functions have a friendlier, more pythonic but still recognizable
name.

Middle-level

The VisaLibrary object exposes the middle-level functions which are one-to-one mapped from the foreign library as
bound methods.

Typically, camelCase names where stripped from the leading vi and changed to underscore separated lower case names.
For example the VISA function viMapAddress appears in the middle-level layer as map_address. The docs about these
methods is located here API.

Low-level

You can also access the low-level functions directly exposed as static methods, for example:

>>> rm.visalib.viMapAddress (<here goes the arguments>)

To call this functions you need to know the function declaration and how to interface it to python. To help you out, the
VisaLibrary object also contains middle-level functions. Each middle-level function wraps one low-level function. In
this case:

>>> rm.visalib.map_address (<here goes the arguments>)

The calling convention and types are handled by the wrapper.

2.9. Architecture 17

PyVISA Documentation, Release 1.6.3

18 Chapter 2. User guide

CHAPTER 3

More information

3.1 VISA resource names

If you use the function open_resource (), you must tell this function the VISA resource name of the instrument
you want to connect to. Generally, it starts with the bus type, followed by a double colon ”::”, followed by the number
within the bus. For example,

[GPIB::10

denotes the GPIB instrument with the number 10. If you have two GPIB boards and the instrument is connected to
board number 1, you must write

[GPIB1::10

As for the bus, things like “GPIB”, “USB”, “ASRL” (for serial/parallel interface) are possible. So for connecting to
an instrument at COM2, the resource name is

| ASRL2

(Since only one instrument can be connected with one serial interface, there is no double colon parameter.) However,
most VISA systems allow aliases such as “COM2” or “LPT1”. You may also add your own aliases.

The resource name is case-insensitive. It doesn’t matter whether you say “ASRL2” or “asrl2”. For further information,
I have to refer you to a comprehensive VISA description like http://www.ni.com/pdf/manuals/370423a.pdf.

3.1.1 VISA Resource Syntax and Examples

(This is adapted from the VISA manual)

The following table shows the grammar for the address string. Optional string segments are shown in square brackets

D.

19

http://www.ni.com/pdf/manuals/370423a.pdf

PyVISA Documentation, Release 1.6.3

Interface Syntax

ENET-Serial ASRL[0]::host address::serial port::INSTR

INSTR

GPIB INSTR GPIB[board]::primary address[::secondary address][::INSTR]

GPIB INTFC GPIB[board]::INTFC

PXI BACKPLANE | PXI[interface]::chassis number::BACKPLANE

PXIINSTR PXI[bus]::device[::function][::INSTR]

PXIINSTR PXI[interface]::bus-device[.function][::INSTR]

PXIINSTR PXI[interface]::CHASSISchassis number::SLOTslot number[::FUNCfunction][::INSTR]

PXI MEMACC PXI[interface]::MEMACC

Remote NI-VISA visa://host address[:server port]/remote resource

Serial INSTR ASRLboard[::INSTR]

TCPIP INSTR TCPIP[board]::host address[::LAN device name][::INSTR]

TCPIP SOCKET TCPIP[board]::host address::port:: SOCKET

USB INSTR USB|[board]::manufacturer ID::model code::serial number[::USB interface
number][::INSTR]

USB RAW USB|[board]::manufacturer ID::model code::serial number[::USB interface number]::RAW

VXI BACKPLANE | VXI[board][::VXI logical address]::BACKPLANE

VXI INSTR VXI[board]::VXI logical address[::INSTR]

VXI MEMACC VXI[board]::MEMACC

VXI SERVANT VXI[board]::SERVANT

Use the GPIB keyword to establish communication with GPIB resources. Use the VXI keyword for VXI resources via
embedded, MXIbus, or 1394 controllers. Use the ASRL keyword to establish communication with an asynchronous
serial (such as RS-232 or RS-485) device. Use the PXI keyword for PXI and PCI resources. Use the TCPIP keyword
for Ethernet communication.

The following table shows the default value for optional string segments.

Optional String Segments | Default Value

board 0

GPIB secondary address none

LAN device name inst0

PXI bus 0

PXI function 0

USB interface number lowest numbered relevant interface

The following table shows examples of address strings:

20

Chapter 3. More information

PyVISA Documentation, Release 1.6.3

Address String Description

ASRL::1.2.3.4::2::IN$TRserial device attached to port 2 of the ENET Serial controller at address 1.2.3.4.
ASRLI::INSTR A serial device attached to interface ASRL1.

GPIB::1::0::INSTR | A GPIB device at primary address 1 and secondary address 0 in GPIB interface 0.
GPIB2::INTFC Interface or raw board resource for GPIB interface 2.

PXI::15::INSTR PXI device number 15 on bus 0 with implied function 0.

PXTI::2::BACKPLANE Backplane resource for chassis 2 on the default PXI system, which is interface 0.
PXI::CHASSIS1::SLOPXI device in slot number 3 of the PXI chassis configured as chassis 1.

PXI0::2- PXI bus number 2, device 12 with function 1.

12.1::INSTR
PXI0::MEMACC PXI MEMACC session.

TCPIP::dev.company.comTUPSIPRIevice using VXI-11 or LXI located at the specified address. This uses the
default LAN Device Name of inst0.

TCPIPO::1.2.3.4::9991: SO@KIKIP/IP access to port 999 at the specified IP address.

USB::0x1234::125:: A2 USB Test & Measurement class device with manufacturer ID 0x1234, model code 125,
5::INSTR and serial number A22-5. This uses the device’s first available USBTMC interface. This is
usually number 0.

USB::0x5678::0x33:: SNOgsw. LIIFBANOnclass device with manufacturer ID 0x5678, model code 0x33, and serial
number SN999. This uses the device’s interface number 1.

visa://hostname/ASRL ITHN&ERurce ASRL1::INSTR on the specified remote system.

VXI::1::BACKPLANE Mainframe resource for chassis 1 on the default VXI system, which is interface 0.
VXI::MEMACC Board-level register access to the VXI interface.

VXIO::1::INSTR A VXI device at logical address 1 in VXI interface VXIO.

VXI0::SERVANT Servant/device-side resource for VXI interface 0.

3.2 Migrating from PyVISA < 1.5

Note: if you want PyVISA 1.4 compatibility use PyVISA 1.5 that provides Python 3 support, better visa library
detection heuristics, Windows, Linux and OS X support, and no singleton object. PyVISA 1.6+ introduces a few

compatibility breaks.

Some of these decisions were inspired by the visalib package as a part of Lantz

3.2.1 Short summary

PyVISA 1.5 has full compatibility with previous versions of PyVISA using the legacy module (changing some of the
underlying implementation). But you are encouraged to do a few things differently if you want to keep up with the
latest developments and be compatible with PyVISA > 1.5.

Indeed PyVISA 1.6 breaks compatibility to bring across a few good things.

If you are doing:

>>> import visa
>>> keithley = visa.instrument ("GPIB::12")
>>> print (keithley.ask ("+«IDN?"))

change it to:

>>> import visa

>>> rm = visa.ResourceManager ()

>>> keithley = rm.open_resource ("GPIB::12")
>>> print (keithley.query ("+«IDN?"))

3.2. Migrating from PyVISA < 1.5 21

https://lantz.readthedocs.org/

PyVISA Documentation, Release 1.6.3

If you are doing:

‘>>> print (visa.get_instruments_list ())

change it to:

’>>> print (rm.list_resources())

If you are doing:

>>> import pyvisa.vpp43 as vpp43
>>> vpp43.visa_library.load_library("/path/to/my/libvisa.so.7")

change it to:

>>> import visa
>>> rm = visa.ResourceManager ("/path/to/my/libvisa.so.7")
>>> 1lib = rm.visalib

If you are doing::

‘>>> vpp43.lock (session)

change it to:

’>>> lib.lock (session)

or better:

’>>> resource.lock ()

If you are doing::

‘>>> inst.term_chars = '"\r'

change it to:

>>> inst.read_termination = '\r’'
>>> inst.write termination = '\r'

If you are doing::

‘>>> print (lib.status)

change it to:

‘>>> print (1lib.last_status)

or even better, do it per resource:

>>> print (rm.last_status) # for the resource manager
>>> print (inst.last_status) # for a specific instrument

If you are doing::

‘>>> inst.timeout = 1 # Seconds

change it to:

’>>> inst.timeout = 1000 # Milliseconds

As you see, most of the code shown above is making a few things explict. It adds 1 line of code (instantiating the
ResourceManager object) which is not a big deal but it makes things cleaner.

22 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

If you were using printf, queryf, scanf, sprintf or sscanf of vpp43, rewrite as pure Python code (see below).
If you were using Instrument.delay, change your code or use Instrument.query_delay (see below).
A few alias has been created to ease the transition:

e ask -> query

* ask_delay -> query_delay

e get_instrument -> open_resource

3.2.2 A more detailed description

Dropped support for string related functions

The VISA library includes functions to search and manipulate strings such as printf, queryf, scanf, sprintf and sscanf.
This makes sense as VISA involves a lot of string handling operations. The original PyVISA implementation wrapped
these functions. But these operations are easily expressed in pure python and therefore were rarely used.

PyVISA 1.5 keeps these functions for backwards compatibility but they are removed in 1.6.

We suggest that you replace such functions by a pure Python version.

Isolated low-level wrapping module

In the original PyVISA implementation, the low level implementation (vpp43) was mixed with higher level constructs.
The VISA library was wrapped using ctypes.

In 1.5, we refactored it as ctwrapper. This allows us to test the foreign function calls by isolating them from higher
level abstractions. More importantly, it also allows us to build new low level modules that can be used as drop in
replacements for ctwrapper in high level modules.

In 1.6, we made the ResourceManager the object exposed to the user. The type of the VisaLibrary can selected
depending of the library_path and obtained from a plugin package.

We have two of such packages planned:
* a Mock module that allows you to test a PyVISA program even if you do not have VISA installed.

* a CFFI based wrapper. CFFI is new python package that allows easier and more robust wrapping of foreign
libraries. It might be part of Python in the future.

PyVISA 1.5 keeps vpp43 in the legacy subpackage (reimplemented on top of ctwrapper) to help with the migration.
This module is gone in 1.6.

All functions that were present in vpp43 are now present in ctwrapper but they take an additional first parameter: the
foreign library wrapper.

We suggest that you replace vpp43 by accessing the VisaLibrary object under the attribute visalib of the resource
manager which provides all foreign functions as bound methods (see below).

No singleton objects

The original PyVISA implementation relied on a singleton, global objects for the library wrapper (named visa_library,
an instance of the old pyvisa.vpp43.VisaLibrary) and the resource manager (named resource_manager, and instance
of the old pyvisa.visa.ResourceManager). These were instantiated on import and the user could rebind to a different
library using the load_library method. Calling this method however did not affect resource_manager and might lead
to an inconsistent state.

3.2. Migrating from PyVISA < 1.5 23

PyVISA Documentation, Release 1.6.3

There were additionally a few global structures such a status which stored the last status returned by the library and
the warning context to prevent unwanted warnings.

In 1.5, there is a new VisaLibrary class and a new ResourceManager class (they are both in pyvisa.highlevel). The new
classes are not singletons, at least not in the strict sense. Multiple instances of VisaLibrary and ResourceManager are
possible, but only if they refer to different foreign libraries. In code, this means:

>>> 1ibl visa.VisaLibrary ("/path/to/my/libvisa.so.7")
>>> 1ib2 visa.Visalibrary ("/path/to/my/libvisa.so.7")
>>> 1ib3 = visa.Visalibrary ("/path/to/my/libvisa.so.8")
>>> 1ibl is 1ib2

True

>>> 1ibl is 1ib3

False

Most of the time, you will not need access to a VisaLibrary object but to a ResourceManager. You can do:

>>> 1lib = visa.Visalibrary("/path/to/my/libvisa.so.7")
>>> rm = lib.resource_manager

or equivalently:

>>> rm = visa.ResourceManager ("/path/to/my/libvisa.so.7")

Note: If the path for the library is not given, the path is obtained from the user settings file (if exists) or guessed from
the OS.

In 1.6, the state returned by the library is stored per resource. Additionally, warnings can be silenced by resource as
well. You can access with the last_status property.

All together, these changes makes PyVISA thread safe.

VisaLibrary methods as way to call Visa functions
In the original PyVISA implementation, the VisaLibrary class was just having a reference to the ctypes library and a
few functions.

In 1.5, we introduced a new VisaLibrary class (pyvisa.highlevel) which has every single low level function defined in
ctwrapper as bound methods. In code, this means that you can do:

>>> import visa

>>> rm = visa.ResourceManager ("/path/to/my/libvisa.so.7")
>>> lib = rm.visalib

>>> print (1lib.read_stb(session))

(But it is very likely that you do not have to do it as the resource should have the function you need)

It also has every single VISA foreign function in the underlying library as static method. In code, this means that you
can do:

>>> status = ctypes.c_ushort ()
>>> ret lib.viReadSTB(session, ctypes.byref (status))
>>> print (ret.value)

Ask vs. query

Historically, the method ask has been used in PyVISA to do a write followed by a read. But in many other programs
this operation is called query. Thereby we have decided to switch the name, keeping an alias to help with the transition.

24 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

However, ask_for_values has not been aliased to query_values because the API is different. ask_for_values still uses
the old formatting API which is limited and broken. We suggest that you migrate everything to query_values

Seconds to milliseconds

The timeout is now in milliseconds (not in seconds as it was before). The reason behind this change is to make it
coherent with all other VISA implementations out there. The C-API, LabVIEW, .NET: all use milliseconds. Using the
same units not only makes it easy to migrate to PyVISA but also allows to profit from all other VISA docs out there
without extra cognitive effort.

Removal of Instrument.delay and added Instrument.query_delay
In the original Py VISA implementation, Instrument takes a delay argument that adds a pause after each write operation
(This also can be changed using the delay attribute).

In PyVISA 1.6, delay is removed. Delays after write operations must be added to the application code. Instead, a new
attribute and argument query_delay is available. This allows you to pause between write and read operations inside
query. Additionally, guery takes an optional argument called guery allowing you to change it for each method call.

Deprecated term_chars and automatic removal of CR + LF

In the original PyVISA implementation, Instrument takes a term_chars argument to change at the read and write
termination characters. If this argument is None, CR + LF is appended to each outgoing message and not expected for
incoming messages (although removed if present).

In PyVISA 1.6, term_chars is replaced by read_termination and write_termination. In this way, you can set indepen-
dently the termination for each operation. Automatic removal of CR + LF is also gone in 1.6.

3.3 Contributing to PyVISA

You can contribute in different ways:

3.3.1 Report issues

You can report any issues with the package, the documentation to the PyVISA issue tracker. Also feel free to submit
feature requests, comments or questions. In some cases, platform specific information is required. If you think this is
the case, run the following command and paste the output into the issue:

python -m visa info

It is useful that you also provide the log output. To obtain it, add the following lines to your code:

import visa
visa.log_to_screen()

3.3.2 Contribute code

To contribute fixes, code or documentation to PyVISA, send us a patch, or fork PyVISA in github and submit the
changes using a pull request.

You can also get the code from PyPI or GitHub. You can either clone the public repository:

3.3. Contributing to PyVISA 25

https://github.com/hgrecco/pyvisa/issues
http://github.com/hgrecco/pyvisa
https://pypi.python.org/pypi/PyVISA
http://github.com/hgrecco/pyvisa

PyVISA Documentation, Release 1.6.3

‘$ git clone git://github.com/hgrecco/pyvisa.git

Download the tarball:

’$ curl -OL https://github.com/hgrecco/pyvisa/tarball/master

Or, download the zipball:

’$ curl -OL https://github.com/hgrecco/pyvisa/zipball/master

Once you have a copy of the source, you can embed it in your Python package, or install it into your site-packages
easily:

‘$ python setup.py install

Note: If you have an old system installation of Python and you don’t want to mess with it, you can try Anaconda CE.
It is a free Python distribution by Continuum Analytics that includes many scientific packages.

3.3.3 Contributing to an existing backend
Backends are the central piece of PyVISA as they provide the low level communication over the different interfaces.

There a couple of backends in the wild which can use your help. Look them up in PyPI (try pyvisa in the search box)
and see where you can help.

3.3.4 Contributing a new backend

If you think there is a new way that low level communication can be achieved, go for it. You can use any of the existing
backends as a template or start a thread in the issue tracker and we will be happy to help you.

3.4 Frequently asked questions

3.4.1 Is PyVISA endorsed by National Instruments?

No. PyVISA is developed independently of National Instrument as a wrapper for the VISA library.

3.4.2 Who makes PyVISA?

PyVISA was originally programmed by Torsten Bronger and Gregor Thalhammer. It is based on earlier experiences
by Thalhammer.

It was maintained from March 2012 to August 2013 by Florian Bauer. It is currently maintained by Hernan E. Grecco
<hernan.grecco@gmail.com>.

Take a look at AUTHORS for more information

3.4.3 Is PyVISA thread-safe?

Yes, PyVISA is thread safe starting from version 1.6.

26 Chapter 3. More information

https://store.continuum.io/cshop/anaconda
https://pypi.python.org/pypi/PyVISA
https://github.com/hgrecco/pyvisa/issues
mailto:hernan.grecco@gmail.com
https://github.com/hgrecco/pyvisa/blob/master/AUTHORS

PyVISA Documentation, Release 1.6.3

3.4.4 | have an error in my program and | am having trouble to fix it

PyVISA provides useful logs of all operations. Add the following commands to your program and run it again:

import visa
visa.log_to_screen()

3.4.5 | found a bug, how can | report it?

Please report it on the Issue Tracker, including operating system, python version and library version. In addition you
might add supporting information by pasting the output of this command:

‘python -m visa info

3.4.6 Error: Image not found

This error occurs when you have provided an invalid path for the VISA library. Check that the path provided to the
constructor or in the configuration file

3.4.7 Error: Could not found VISA library

This error occurs when you have not provided a path for the VISA library and PyVISA is not able to find it for you.
You can solve it by providing the library path to the VisaLibrary or ResourceManager constructor:

‘>>> visalib = VisalLibrary('/path/to/library')

or:

‘>>> rm = ResourceManager ('Path to library')

or creating a configuration file as described in Configuring the NI backend.

3.4.8 Error: No matching architecture

This error occurs when you the Python architecture does not match the VISA architecture.

Note: PyVISA tries to parse the error from the underlying foreign function library to provide a more useful error
message. If it does not succeed, it shows the original one.

In Mac OS X the original error message looks like this:

OSError: dlopen(/Library/Frameworks/visa.framework/visa, 6): no suitable image found. Did find:
/Library/Frameworks/visa.framework/visa: no matching architecture in universal wrapper
/Library/Frameworks/visa.framework/visa: no matching architecture in universal wrapper

In Linux the original error message looks like this:

OSError: Could not open VISA library:
Error while accessing /usr/local/vxipnp/linux/bin/libvisa.so.7:/usr/local/vxipnp/linux/bin/libvi:

First, determine the details of your installation with the help of the following debug command:

3.4. Frequently asked questions 27

https://github.com/hgrecco/pyvisa/issues

PyVISA Documentation, Release 1.6.3

‘python -m visa info

You will see the ‘bitness’ of the Python interpreter and at the end you will see the list of VISA libraries that PyVISA
was able to find.

The solution is to:
1. Install and use a VISA library matching your Python ‘bitness’

Download and install it from National Instruments’s VISA. Run the debug command again to see if the new
library was found by PyVISA. If not, create a configuration file as described in Configuring the NI backend.

If there is no VISA library with the correct bitness available, try solution 2.
or
2. Install and use a Python matching your VISA library ‘bitness’

In Windows and Linux: Download and install Python with the matching bitness. Run your script again using
the new Python

In Mac OS X, Python is usually delivered as universal binary (32 and 64 bits).

You can run it in 32 bit by running:

’ arch -i1386 python myscript.py

or in 64 bits by running:

’ arch -x86_64 python myscript.py

You can create an alias by adding the following line
alias python32="arch -i386 python”
into your .bashrc or .profile or ~/.bash_profile (or whatever file depending on which shell you are using.)

You can also create a virtual environment for this.

3.4.9 Where can | get more information about VISA?

* The original VISA docs:
— VISA specification (scroll down to the end)
— VISA library specification
— VISA specification for textual languages
e The very good VISA manuals from National Instruments’s VISA:
— NI-VISA User Manual
— NI-VISA Programmer Reference Manual
— NI-VISA help file in HTML

3.5 NI-VISA Installation

In every OS, the NI-VISA library bitness (i.e. 32- or 64-bit) has to match the Python bitness. So first you need to install
a NI-VISA that works with your OS and then choose the Python version matching the installed NI-VISA bitness.

28 Chapter 3. More information

http://www.virtualenv.org/en/latest/
http://www.ivifoundation.org/Downloads/Specifications.htm
http://www.ivifoundation.org/Downloads/Class%20Specifications/vpp43.doc
http://www.ivifoundation.org/Downloads/Class%20Specifications/vpp432.doc
http://ni.com/visa/
http://digital.ni.com/manuals.nsf/websearch/266526277DFF74F786256ADC0065C50C
http://digital.ni.com/manuals.nsf/websearch/87E52268CF9ACCEE86256D0F006E860D
http://digital.ni.com/manuals.nsf/websearch/21992F3750B967ED86256F47007B00B3

PyVISA Documentation, Release 1.6.3

PyVISA includes a debugging command to help you troubleshoot this (and other things):

python -m visa info

According to National Instruments, NI VISA 5.4.1 is available for:

Note: NI-VISA is not available for your system, take a look at the Frequently asked questions.

3.5.1 Mac OS X

Download NI-VISA for Mac OS X

Supports:

Mac OS X 10.7.x x86 and x86-64
Mac OS X 10.8.x

64-bit VISA applications are supported for a limited set of instrumentation buses. The supported buses are ENET-

Serial, USB, and TCPIP. Logging VISA operations in NI I/0 Trace from 64-bit VISA applications is not supported.

3.5.2 Windows

Download NI-VISA for Windows

Suports:

Support for Windows Server 2003 R2 may require disabling physical address extensions (PAE).

Windows Server 2003 R2 (32-bit version only)
Windows Server 2008 R2 (64-bit version only)
Windows 8 x64 Edition (64-bit version)
Windows 8 (32-bit version)

Windows 7 x64 Edition (64-bit version)
Windows 7 (32-bit version)

Windows Vista x64 Edition (64-bit version)
Windows Vista (32-bit version)

Windows XP Service Pack 3

3.5.3 Linux

Download NI-VISA for Linux

Supports:

openSUSE 12.2
openSUSE 12.1
Red Hat Enterprise Linux Desktop + Workstation 6
Red Hat Enterprise Linux Desktop + Workstation 5

Scientific Linux 6.x

3.5. NI-VISA Installation

29

http://www.ni.com/download/ni-visa-5.4.1/4631/en/
http://www.ni.com/download/ni-visa-5.4.1/4626/en/
http://www.ni.com/download/ni-visa-5.4.1/4629/en/

PyVISA Documentation, Release 1.6.3

e Scientific Linux 5.x

Currently, only 32-bit applications are supported on the x86-64 architecture.

Note: NI-VISA runs on other linux distros but the installation is more cumbersome.

3.6 API

3.6.1 Visa Library

class pyvisa.highlevel.VisaLibraryBase

Base for VISA library classes.

A class derived from VisaLibraryBase library provides the low-level communication to the underlying devices
providing Pythonic wrappers to VISA functions. But not all derived class must/will implement all methods.

The default VisaLibrary classis pyvisa.ctwrapper.highlevel .NIVisaLibrary, which implements
a ctypes wrapper around the NI-VISA library.

In general, you should not instantiate it directly. The object exposed to the user is the
pyvisa.highlevel.ResourceManager. If needed, you can access the VISA library from it:

>>> import visa
>>> rm = visa.ResourceManager ("/path/to/my/libvisa.so.7")
>>> 1lib = rm.visalib

assert_interrupt_signal (session, mode, status_id)
Asserts the specified interrupt or signal.

Corresponds to viAssertIntrSignal function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* mode — How to assert the interrupt. (Constants. ASSERT*)

* status_id - This is the status value to be presented during an interrupt acknowledge
cycle.

Returns return value of the library call.
Return type pyvisa.constants.StatusCode

assert_trigger (session, protocol)
Asserts software or hardware trigger.

Corresponds to viAssertTrigger function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* protocol — Trigger protocol to use during assertion. (Constants.PROT*)
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

assert_utility signal (session, line)
Asserts or deasserts the specified utility bus signal.

30

Chapter 3. More information

PyVISA Documentation, Release 1.6.3

Corresponds to viAssertUtilSignal function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* line - specifies the utility bus signal to assert. (Constants.VI_UTIL_ASSERT?*)
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

buffer_ read (session, count)
Reads data from device or interface through the use of a formatted I/O read buffer.

Corresponds to viBufRead function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* count — Number of bytes to be read.
Returns data read, return value of the library call.
Return type bytes, pyvisa.constants.StatusCode

buffer write (session, data)
Writes data to a formatted I/O write buffer synchronously.

Corresponds to viBufWrite function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* data (bytes) — data to be written.
Returns number of written bytes, return value of the library call.
Return type int, pyvisa.constants.StatusCode

clear (session)
Clears a device.

Corresponds to viClear function of the VISA library.
Parameters session — Unique logical identifier to a session.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

close (session)
Closes the specified session, event, or find list.

Corresponds to viClose function of the VISA library.
Parameters session — Unique logical identifier to a session, event, or find list.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

disable_event (session, event_type, mechanism)
Disables notification of the specified event type(s) via the specified mechanism(s).

Corresponds to viDisableEvent function of the VISA library.

Parameters

3.6. API 31

PyVISA Documentation, Release 1.6.3

* session — Unique logical identifier to a session.
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be disabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

Returns return value of the library call.
Return type pyvisa.constants.StatusCode

discard_events (session, event_type, mechanism)
Discards event occurrences for specified event types and mechanisms in a session.

Corresponds to viDiscardEvents function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* event_type — Logical event identifier.

* mechanism — Specifies event handling mechanisms to be disabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_SUSPEND_HNDLR)

Returns return value of the library call.
Return type pyvisa.constants.StatusCode

enable_event (session, event_type, mechanism, context=None)
Enable event occurrences for specified event types and mechanisms in a session.

Corresponds to viEnableEvent function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* event_type — Logical event identifier.

* mechanism — Specifies event handling mechanisms to be disabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR)

¢ context —
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

find_next (find_list)
Returns the next resource from the list of resources found during a previous call to find_resources().

Corresponds to viFindNext function of the VISA library.

Parameters £find_list — Describes a find list. This parameter must be created by
find_resources().

Returns Returns a string identifying the location of a device, return value of the library call.
Return type unicode (Py2) or str (Py3), pyvisa.constants.StatusCode

find_resources (session, query)
Queries a VISA system to locate the resources associated with a specified interface.

Corresponds to viFindRsrc function of the VISA library.

Parameters

* session - Unique logical identifier to a session (unused, just to uniform signatures).

32 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

* query — A regular expression followed by an optional logical expression. Use ‘?* for
all.

Returns find_list, return_counter, instrument_description, return value of the library call.

Return type ViFindList, int, unicode (Py2) or str (Py3),
pyvisa.constants.StatusCode

flush (session, mask)
Manually flushes the specified buffers associated with formatted I/O operations and/or serial communica-
tion.

Corresponds to viFlush function of the VISA library.
Parameters
* session — Unique logical identifier to a session.

* mask — Specifies the action to be taken with flushing the buffer. (Constants.READ*,
.WRITE*, I0%)

Returns return value of the library call.
Return type pyvisa.constants.StatusCode

get_attribute (session, attribute)
Retrieves the state of an attribute.

Corresponds to viGetAttribute function of the VISA library.
Parameters
* session - Unique logical identifier to a session, event, or find list.
* attribute — Resource attribute for which the state query is made (see Attributes.*)

Returns The state of the queried attribute for a specified resource, return value of the library
call.

Return type unicode (Py2) or str (Py3), list or other type,
pyvisa.constants.StatusCode

static get_debug_info ()
Override this method to return an iterable of lines with the backend debug details.

get_last_status_in_session (session)
Last status in session.

Helper function to be called by resources properties.

static get_library paths()
Override this method to return an iterable of possible library_paths to try in case that no argument is given.

gpib_command (session, data)
Write GPIB command bytes on the bus.

Corresponds to viGpibCommand function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* data (bytes) — data tor write.
Returns Number of written bytes, return value of the library call.

Return type int, pyvisa.constants.StatusCode

3.6.

API 33

PyVISA Documentation, Release 1.6.3

gpib_control_atn (session, mode)
Specifies the state of the ATN line and the local active controller state.

Corresponds to viGpibControlATN function of the VISA library.
Parameters
* session — Unique logical identifier to a session.

* mode — Specifies the state of the ATN line and optionally the local active controller state.
(Constants.VI_GPIB_ATN*)

Returns return value of the library call.
Return type pyvisa.constants.StatusCode

gpib_control_ren (session, mode)
Controls the state of the GPIB Remote Enable (REN) interface line, and optionally the remote/local state

of the device.
Corresponds to viGpibControlREN function of the VISA library.
Parameters
* session - Unique logical identifier to a session.

* mode — Specifies the state of the REN line and optionally the device remote/local state.
(Constants.VI_GPIB_REN%*)

Returns return value of the library call.
Return type pyvisa.constants.StatusCode

gpib_pass_control (session, primary_address, secondary_address)
Tell the GPIB device at the specified address to become controller in charge (CIC).

Corresponds to viGpibPassControl function of the VISA library.
Parameters
* session - Unique logical identifier to a session.

* primary_address — Primary address of the GPIB device to which you want to pass
control.

* secondary address — Secondary address of the targeted GPIB device. If the tar-
geted device does not have a secondary address, this parameter should contain the value
Constants.VI_NO_SEC_ADDR.

Returns return value of the library call.
Return type pyvisa.constants.StatusCode

gpib_send_ifc (session)
Pulse the interface clear line (IFC) for at least 100 microseconds.

Corresponds to viGpibSendIFC function of the VISA library.
Parameters session — Unique logical identifier to a session.
Returns return value of the library call.

Return type pyvisa.constants.StatusCode

handlers = None
Contains all installed event handlers. Its elements are tuples with three elements: The handler itself (a

34 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

Python callable), the user handle (as a ct object) and the handler again, this time as a ct object created with
CFUNCTYPE.

ignore_warning (*args, **kwds)
A session dependent context for ignoring warnings

Parameters
* session — Unique logical identifier to a session.
* warnings_constants — constants identifying the warnings to ignore.

in_16 (session, space, offset, extended=False)
Reads in an 16-bit value from the specified memory space and offset.

Corresponds to viln16* function of the VISA library.

Parameters
* session - Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* extended - Use 64 bits offset independent of the platform.

Returns Data read from memory, return value of the library call.

Return type int, pyvisa.constants.StatusCode

in_32 (session, space, offset, extended=False)
Reads in an 32-bit value from the specified memory space and offset.

Corresponds to viln32* function of the VISA library.

Parameters
* session - Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* extended - Use 64 bits offset independent of the platform.

Returns Data read from memory, return value of the library call.

Return type int, pyvisa.constants.StatusCode

in_ 64 (session, space, offset, extended=False)
Reads in an 64-bit value from the specified memory space and offset.

Corresponds to viln64* function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* extended — Use 64 bits offset independent of the platform.
Returns Data read from memory, return value of the library call.

Return type int, pyvisa.constants.StatusCode

3.6.

API 35

PyVISA Documentation, Release 1.6.3

in_ 8 (session, space, offset, extended=False)
Reads in an 8-bit value from the specified memory space and offset.

Corresponds to viln8* function of the VISA library.

Parameters
* session — Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* extended — Use 64 bits offset independent of the platform.

Returns Data read from memory, return value of the library call.

Return type int, pyvisa.constants.StatusCode

install_handler (session, event_type, handler, user_handle)
Installs handlers for event callbacks.

Corresponds to vilnstallHandler function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns a handler descriptor which consists of three elements: - handler (a python callable) -
user handle (a ctypes object) - ctypes handler (ctypes object wrapping handler) and return
value of the library call.

Return type int, pyvisa.constants.StatusCode

install_visa_handler (session, event_type, handler, user_handle=None)
Installs handlers for event callbacks.

Parameters
* session - Unique logical identifier to a session.
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

issue_warning_on = None
Set error codes on which to issue a warning. set

last_status
Last return value of the library.

36 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

lock (session, lock_type, timeout, requested_key=None)
Establishes an access mode to the specified resources.

Corresponds to viLock function of the VISA library.
Parameters
* session — Unique logical identifier to a session.

* lock_type - Specifies the type of lock requested, either Con-
stants. EXCLUSIVE_LOCK or Constants. SHARED_LLOCK.

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error.

* requested_key — This parameter is not used and should be set to VI_NULL when
lockType is VI_EXCLUSIVE_LOCK.

Returns access_key that can then be passed to other sessions to share the lock, return value of
the library call.

Return type str, pyvisa.constants.StatusCode

map_address (session, map_space, map_base, map_size, access=False, suggested=None)
Maps the specified memory space into the process’s address space.

Corresponds to viMapAddress function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* map_space — Specifies the address space to map. (Constants.*SPACE*)
* map_base — Offset (in bytes) of the memory to be mapped.
* map_size — Amount of memory to map (in bytes).
* access -

* suggested - If not Constants. VI_NULL (0), the operating system attempts to map the
memory to the address specified in suggested. There is no guarantee, however, that the
memory will be mapped to that address. This operation may map the memory into an
address region different from suggested.

Returns address in your process space where the memory was mapped, return value of the
library call.

Return type address, pyvisa.constants.StatusCode

map_trigger (session, trigger_source, trigger_destination, mode)
Map the specified trigger source line to the specified destination line.

Corresponds to viMapTrigger function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* trigger_source — Source line from which to map. (Constants.VI_TRIG*)
* trigger_destination — Destination line to which to map. (Constants.VI_TRIG*)
* mode —
Returns return value of the library call.

Return type pyvisa.constants.StatusCode

3.6.

API

37

PyVISA Documentation, Release 1.6.3

memory_allocation (session, size, extended=False)
Allocates memory from a resource’s memory region.

Corresponds to viMemAlloc* functions of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* size — Specifies the size of the allocation.
* extended - Use 64 bits offset independent of the platform.
Returns offset of the allocated memory, return value of the library call.
Return type offset, pyvisa.constants.StatusCode

memory_free (session, offset, extended=False)
Frees memory previously allocated using the memory_allocation() operation.

Corresponds to viMemFree* function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* offset — Offset of the memory to free.
* extended — Use 64 bits offset independent of the platform.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

move (session, source_space, source_offset, source_width, destination_space, destination_offset, destina-

tion_width, length)
Moves a block of data.

Corresponds to viMove function of the VISA library.
Parameters

* session — Unique logical identifier to a session.
* source_space — Specifies the address space of the source.
* source_offset — Offset of the starting address or register from which to read.
* source_width — Specifies the data width of the source.
* destination_space — Specifies the address space of the destination.
* destination_offset — Offset of the starting address or register to which to write.
* destination_width — Specifies the data width of the destination.

¢ length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

Returns return value of the library call.
Return type pyvisa.constants.StatusCode

move_asynchronously (session, source_space, source_offset, source_width, destination_space, des-

tination_offset, destination_width, length)
Moves a block of data asynchronously.

Corresponds to viMoveAsync function of the VISA library.

Parameters

38 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

session — Unique logical identifier to a session.

source_space — Specifies the address space of the source.

source_offset — Offset of the starting address or register from which to read.
source_width — Specifies the data width of the source.

destination_space — Specifies the address space of the destination.
destination_offset — Offset of the starting address or register to which to write.
destination_width — Specifies the data width of the destination.

length — Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

Returns Job identifier of this asynchronous move operation, return value of the library call.

Return type jobid, pyvisa.constants.StatusCode

move_in (session, space, offset, length, width, extended=False)
Moves a block of data to local memory from the specified address space and offset.

Corresponds to viMoveln* functions of the VISA library.

Parameters

session — Unique logical identifier to a session.
space — Specifies the address space. (Constants.*SPACE*)
offset — Offset (in bytes) of the address or register from which to read.

length — Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

width — Number of bits to read per element.

extended - Use 64 bits offset independent of the platform.

Returns Data read from the bus, return value of the library call.

Return type list, pyvisa.constants.StatusCode

move_in_16 (session, space, offset, length, extended=False)
Moves an 16-bit block of data from the specified address space and offset to local memory.

Corresponds to viMoveln16* functions of the VISA library.

Parameters

session — Unique logical identifier to a session.
space — Specifies the address space. (Constants. *SPACE*)
offset — Offset (in bytes) of the address or register from which to read.

length — Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

extended — Use 64 bits offset independent of the platform.

Returns Data read from the bus, return value of the library call.

Return type list, pyvisa.constants.StatusCode

3.6. API

39

PyVISA Documentation, Release 1.6.3

move_in_ 32 (session, space, offset, length, extended=False)
Moves an 32-bit block of data from the specified address space and offset to local memory.

Corresponds to viMoveIn32* functions of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

¢ length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* extended - Use 64 bits offset independent of the platform.
Returns Data read from the bus, return value of the library call.
Return type list, pyvisa.constants.StatusCode

move_in_ 64 (session, space, offset, length, extended=False)
Moves an 64-bit block of data from the specified address space and offset to local memory.

Corresponds to viMoveln64* functions of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

¢ length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* extended - Use 64 bits offset independent of the platform.
Returns Data read from the bus, return value of the library call.
Return type list, pyvisa.constants.StatusCode

move_in_ 8 (session, space, offset, length, extended=False)
Moves an 8-bit block of data from the specified address space and offset to local memory.

Corresponds to viMoveln8* functions of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

* length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* extended - Use 64 bits offset independent of the platform.
Returns Data read from the bus, return value of the library call.

Return type list, pyvisa.constants.StatusCode

40 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

move_out (session, space, offset, length, data, width, extended=False)
Moves a block of data from local memory to the specified address space and offset.

Corresponds to viMoveOut* functions of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

¢ length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* data — Data to write to bus.

* width — Number of bits to read per element.

* extended — Use 64 bits offset independent of the platform.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

move_out_16 (session, space, offset, length, data, extended=False)
Moves an 16-bit block of data from local memory to the specified address space and offset.

Corresponds to viMoveOut16* functions of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

* length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* data — Data to write to bus.

* extended - Use 64 bits offset independent of the platform.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

move_out_32 (session, space, offset, length, data, extended=False)
Moves an 32-bit block of data from local memory to the specified address space and offset.

Corresponds to viMoveOut32* functions of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

¢ length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

e data — Data to write to bus.

* extended — Use 64 bits offset independent of the platform.

3.6.

API 41

PyVISA Documentation, Release 1.6.3

Returns return value of the library call.
Return type pyvisa.constants.StatusCode

move_out_ 64 (session, space, offset, length, data, extended=False)
Moves an 64-bit block of data from local memory to the specified address space and offset.

Corresponds to viMoveOut64* functions of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

* length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* data — Data to write to bus.

* extended — Use 64 bits offset independent of the platform.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

move_out_8 (session, space, offset, length, data, extended=False)
Moves an 8-bit block of data from local memory to the specified address space and offset.

Corresponds to viMoveOut8* functions of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

¢ length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* data — Data to write to bus.
* extended - Use 64 bits offset independent of the platform.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode
Corresponds to viMoveOut8 function of the VISA library.

open (session, resource_name, access_mode=<AccessModes.no_lock: 0>, open_timeout=0)
Opens a session to the specified resource.

Corresponds to viOpen function of the VISA library.
Parameters

* session — Resource Manager session (should always be a session returned from
open_default_resource_manager()).

* resource_name — Unique symbolic name of a resource.

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

42 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

* open_timeout — Specifies the maximum time period (in milliseconds) that this opera-
tion waits before returning an error.

Returns Unique logical identifier reference to a session, return value of the library call.
Return type session, pyvisa.constants.StatusCode

open_default_resource_manager ()
This function returns a session to the Default Resource Manager resource.

Corresponds to viOpenDefaultRM function of the VISA library.

Returns Unique logical identifier to a Default Resource Manager session, return value of the
library call.

Return type session, pyvisa.constants.StatusCode

out_16 (session, space, offset, data, extended=False)
Write in an 16-bit value from the specified memory space and offset.

Corresponds to viOut16* functions of the VISA library.

Parameters
* session - Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* data — Data to write to bus.
* extended - Use 64 bits offset independent of the platform.

Returns return value of the library call.

Return type pyvisa.constants.StatusCode

out_32 (session, space, offset, data, extended=False)
Write in an 32-bit value from the specified memory space and offset.

Corresponds to viOut32* functions of the VISA library.

Parameters
* session - Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* data — Data to write to bus.
* extended - Use 64 bits offset independent of the platform.

Returns return value of the library call.

Return type pyvisa.constants.StatusCode

out_ 64 (session, space, offset, data, extended=False)
Write in an 64-bit value from the specified memory space and offset.

Corresponds to viOut64* functions of the VISA library.
Parameters
* session - Unique logical identifier to a session.

* space — Specifies the address space. (Constants.*SPACE*)

3.6.

API 43

PyVISA Documentation, Release 1.6.3

* offset — Offset (in bytes) of the address or register from which to read.
* data — Data to write to bus.
* extended - Use 64 bits offset independent of the platform.

Returns return value of the library call.

Return type pyvisa.constants.StatusCode

out_ 8 (session, space, offset, data, extended="False)
Write in an 8-bit value from the specified memory space and offset.

Corresponds to viOut8* functions of the VISA library.

Parameters
* session — Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* data — Data to write to bus.
* extended - Use 64 bits offset independent of the platform.

Returns return value of the library call.

Return type pyvisa.constants.StatusCode

parse_resource (session, resource_name)
Parse a resource string to get the interface information.

Corresponds to viParseRsrc function of the VISA library.
Parameters

* session — Resource Manager session (should always be the Default Resource Manager
for VISA returned from open_default_resource_manager()).

* resource_name — Unique symbolic name of a resource.

Returns Resource information with interface type and board number, return value of the library
call.

Return type pyvisa.highlevel.Resourcelnfo,pyvisa.constants.StatusCode

parse_resource_extended (session, resource_name)
Parse a resource string to get extended interface information.

Corresponds to viParseRsrcEx function of the VISA library.
Parameters

* session — Resource Manager session (should always be the Default Resource Manager
for VISA returned from open_default_resource_manager()).

* resource_name — Unique symbolic name of a resource.
Returns Resource information, return value of the library call.
Return type pyvisa.highlevel.ResourcelInfo,pyvisa.constants.StatusCode

peek (session, address, width)
Read an 8, 16 or 32-bit value from the specified address.

Corresponds to viPeek™* functions of the VISA library.

44 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

Parameters

* session — Unique logical identifier to a session.

* address — Source address to read the value.

e width — Number of bits to read.
Returns Data read from bus, return value of the library call.
Return type bytes, pyvisa.constants.StatusCode

peek_16 (session, address)
Read an 16-bit value from the specified address.

Corresponds to viPeek16 function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* address — Source address to read the value.
Returns Data read from bus, return value of the library call.
Return type bytes, pyvisa.constants.StatusCode

peek_32 (session, address)
Read an 32-bit value from the specified address.

Corresponds to viPeek32 function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* address — Source address to read the value.
Returns Data read from bus, return value of the library call.
Return type bytes, pyvisa.constants.StatusCode

peek_64 (session, address)
Read an 64-bit value from the specified address.

Corresponds to viPeek64 function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* address — Source address to read the value.
Returns Data read from bus, return value of the library call.
Return type bytes, pyvisa.constants.StatusCode

peek_8 (session, address)
Read an 8-bit value from the specified address.

Corresponds to viPeek8 function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* address — Source address to read the value.

Returns Data read from bus, return value of the library call.

3.6. API 45

PyVISA Documentation, Release 1.6.3

Return type bytes, pyvisa.constants.StatusCode

poke (session, address, width, data)
Writes an 8, 16 or 32-bit value from the specified address.

Corresponds to viPoke* functions of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* address — Source address to read the value.
e width — Number of bits to read.
* data — Data to be written to the bus.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

poke_16 (session, address, data)
Write an 16-bit value from the specified address.

Corresponds to viPoke16 function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* address — Source address to read the value.
* data - value to be written to the bus.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

poke_32 (session, address, data)
Write an 32-bit value from the specified address.

Corresponds to viPoke32 function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* address — Source address to read the value.
* data - value to be written to the bus.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

poke_ 64 (session, address, data)
Write an 64-bit value from the specified address.

Corresponds to viPoke64 function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* address — Source address to read the value.
* data - value to be written to the bus.

Returns return value of the library call.

46 Chapter 3.

More information

PyVISA Documentation, Release 1.6.3

Return type pyvisa.constants.StatusCode

poke_ 8 (session, address, data)
Write an 8-bit value from the specified address.

Corresponds to viPoke8 function of the VISA library.

Parameters
* session — Unique logical identifier to a session.
* address — Source address to read the value.
* data - value to be written to the bus.

Returns Data read from bus.

Returns return value of the library call.

Return type pyvisa.constants.StatusCode

read (session, count)
Reads data from device or interface synchronously.

Corresponds to viRead function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
e count — Number of bytes to be read.
Returns data read, return value of the library call.
Return type bytes, pyvisa.constants.StatusCode

read_asynchronously (session, count)
Reads data from device or interface asynchronously.

Corresponds to viReadAsync function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* count — Number of bytes to be read.
Returns result, jobid, return value of the library call.
Return type ctypes buffer, jobid, pyvisa.constants.StatusCode

read_memory (session, space, offset, width, extended=False)
Reads in an 8-bit, 16-bit, 32-bit, or 64-bit value from the specified memory space and offset.

Corresponds to viln* functions of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* width — Number of bits to read.
* extended - Use 64 bits offset independent of the platform.

Returns Data read from memory, return value of the library call.

. API 47

PyVISA Documentation, Release 1.6.3

Return type int, pyvisa.constants.StatusCode

read_stb (session)
Reads a status byte of the service request.

Corresponds to viReadSTB function of the VISA library.
Parameters session — Unique logical identifier to a session.
Returns Service request status byte, return value of the library call.
Return type int, pyvisa.constants.StatusCode

read_to_file (session, filename, count)
Read data synchronously, and store the transferred data in a file.

Corresponds to viReadToFile function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* filename — Name of file to which data will be written.
* count — Number of bytes to be read.
Returns Number of bytes actually transferred, return value of the library call.
Return type int, pyvisa.constants.StatusCode

resource_manager = None
Default ResourceManager instance for this library.

set_attribute (session, attribute, attribute_state)
Sets the state of an attribute.

Corresponds to viSetAttribute function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
e attribute - Attribute for which the state is to be modified. (Attributes.*)
* attribute_state — The state of the attribute to be set for the specified object.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

set_buffer (session, mask, size)
Sets the size for the formatted I/O and/or low-level I/O communication buffer(s).

Corresponds to viSetBuf function of the VISA library.
Parameters
* session — Unique logical identifier to a session.

* mask — Specifies the type of buffer. (Constants.VI_READ_BUF, .VI_WRITE_BUF,
.VI_IO_IN_BUF, .VI_IO_OUT_BUF)

* size — The size to be set for the specified buffer(s).
Returns return value of the library call.

Return type pyvisa.constants.StatusCode

48 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

status_description (session, status)
Returns a user-readable description of the status code passed to the operation.

Corresponds to viStatusDesc function of the VISA library.

Parameters
* session — Unique logical identifier to a session.
* status — Status code to interpret.

Returns
* The user-readable string interpretation of the status code passed to the operation,
* return value of the library call.

Return type
¢ unicode (Py2) or str (Py3)
* pyvisa.constants.StatusCode

terminate (session, degree, job_id)
Requests a VISA session to terminate normal execution of an operation.

Corresponds to viTerminate function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* degree — Constants. NULL
* job_id - Specifies an operation identifier.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

uninstall_handler (session, event_type, handler, user_handle=None)
Uninstalls handlers for events.

Corresponds to viUninstallHandler function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely in a session for an event.

Returns return value of the library call.
Return type pyvisa.constants.StatusCode

uninstall_visa_handler (session, event_type, handler, user_handle=None)
Uninstalls handlers for events.

Parameters
* session - Unique logical identifier to a session.

* event_type — Logical event identifier.

3.6. API 49

PyVISA Documentation, Release 1.6.3

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely in a session for an event.

unlock (session)
Relinquishes a lock for the specified resource.

Corresponds to viUnlock function of the VISA library.
Parameters session — Unique logical identifier to a session.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

unmap_address (session)
Unmaps memory space previously mapped by map_address().

Corresponds to viUnmapAddress function of the VISA library.
Parameters session — Unique logical identifier to a session.
Returns return value of the library call.

Return type pyvisa.constants.StatusCode

unmap_trigger (session, trigger_source, trigger_destination)
Undo a previous map from the specified trigger source line to the specified destination line.

Corresponds to viUnmapTrigger function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* trigger_source — Source line used in previous map. (Constants.VI_TRIG*)

* trigger_destination - Destination line used in previous map. (Con-
stants. VI_TRIG*)

Returns return value of the library call.
Return type pyvisa.constants.StatusCode

usb_control_in (session, request_type_bitmap_field, request_id, request_value, index, length=0)
Performs a USB control pipe transfer from the device.

Corresponds to viUsbControlln function of the VISA library.
Parameters
* session - Unique logical identifier to a session.

* request_type_ bitmap_field - bmRequestType parameter of the setup stage of a
USB control transfer.

* request_id - bRequest parameter of the setup stage of a USB control transfer.
* request_value — wValue parameter of the setup stage of a USB control transfer.

* index — windex parameter of the setup stage of a USB control transfer. This is usually
the index of the interface or endpoint.

* length — wLength parameter of the setup stage of a USB control transfer. This value
also specifies the size of the data buffer to receive the data from the optional data stage of
the control transfer.

50 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

Returns
» The data buffer that receives the data from the optional data stage of the control transfer
* return value of the library call.
Return type
* bytes
* pyvisa.constants.StatusCode

usb_control_out (session, request_type_bitmap_field, request_id, request_value, index, data=u’")
Performs a USB control pipe transfer to the device.

Corresponds to viUsbControlOut function of the VISA library.
Parameters
* session - Unique logical identifier to a session.

* request_type_ bitmap_field - bmRequestType parameter of the setup stage of a
USB control transfer.

* request_id - bRequest parameter of the setup stage of a USB control transfer.
* request_value — wValue parameter of the setup stage of a USB control transfer.

* index — windex parameter of the setup stage of a USB control transfer. This is usually
the index of the interface or endpoint.

* data - The data buffer that sends the data in the optional data stage of the control transfer.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

vxi_command_query (session, mode, command)
Sends the device a miscellaneous command or query and/or retrieves the response to a previous query.

Corresponds to viVxiCommandQuery function of the VISA library.
Parameters
* session — Unique logical identifier to a session.

* mode — Specifies whether to issue a command and/or retrieve a response. (Con-
stants.VI_VXI_CMD#*, .VI_VXI_RESP¥*)

¢ command — The miscellaneous command to send.
Returns The response retrieved from the device, return value of the library call.
Return type int, pyvisa.constants.StatusCode

wait_on_event (session, in_event_type, timeout)
Waits for an occurrence of the specified event for a given session.

Corresponds to viWaitOnEvent function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* in_event_type — Logical identifier of the event(s) to wait for.

* timeout — Absolute time period in time units that the resource shall wait for a specified
event to occur before returning the time elapsed error. The time unit is in milliseconds.

3.6.

API 51

PyVISA Documentation, Release 1.6.3

Returns
* Logical identifier of the event actually received
* A handle specifying the unique occurrence of an event
e return value of the library call.
Return type
* eventtype
¢ event
* pyvisa.constants.StatusCode

write (session, data)
Writes data to device or interface synchronously.

Corresponds to viWrite function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
e data (str) — data to be written.
Returns Number of bytes actually transferred, return value of the library call.
Return type int, pyvisa.constants.StatusCode

write_asynchronously (session, data)
Writes data to device or interface asynchronously.

Corresponds to viWriteAsync function of the VISA library.
Parameters
* session — Unique logical identifier to a session.

e data — data to be written.

Returns Job ID of this asynchronous write operation, return value of the library call.

Return type jobid, pyvisa.constants.StatusCode

write_from_f£file (session, filename, count)
Take data from a file and write it out synchronously.

Corresponds to viWriteFromFile function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* filename — Name of file from which data will be read.
e count — Number of bytes to be written.
Returns Number of bytes actually transferred, return value of the library call.
Return type int, pyvisa.constants.StatusCode

write_memory (session, space, offset, data, width, extended=False)
Write in an 8-bit, 16-bit, 32-bit, value to the specified memory space and offset.

Corresponds to viOut* functions of the VISA library.

Parameters

52 Chapter 3.

More information

http://docs.python.org/2/library/functions.html#str

PyVISA Documentation, Release 1.6.3

* session — Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
» offset — Offset (in bytes) of the address or register from which to read.
* data — Data to write to bus.
e width — Number of bits to read.
* extended - Use 64 bits offset independent of the platform.
Returns return value of the library call.

Return type pyvisa.constants.StatusCode

3.6.2 Resource Manager

class pyvisa.highlevel .ResourceInfo (interface_type, interface_board_number, resource_class, re-

source_name, alias)
Resource extended information

Named tuple with information about a resource. Returned by some ResourceManager methods.

Interface_type Interface type of the given resource string.
pyvisa.constants.InterfaceTlype

Interface_board_number Board number of the interface of the given resource string.
Resource_class Specifies the resource class (for example, “INSTR”) of the given resource string.

Resource_name This is the expanded version of the given resource string. The format should be
similar to the VISA-defined canonical resource name.

Alias Specifies the user-defined alias for the given resource string.

class pyvisa.highlevel.ResourceManager
VISA Resource Manager

Parameters visa_library - VisaLibrary Instance, path of the VISA library or VisaLibrary spec
string. (if not given, the default for the platform will be used).

close ()
Close the resource manager session.

last_status
Last status code returned for an operation with this Resource Manager

Return type pyvisa.constants.StatusCode

list_resources (query=u’?*::INSTR’)
Returns a tuple of all connected devices matching query.

Parameters query —regular expression used to match devices.

list_resources_info (query=u’?*::INSTR’)
Returns a dictionary mapping resource names to resource extended information of all connected devices
matching query.

Parameters query —regular expression used to match devices.
Returns Mapping of resource name to Resourcelnfo

Return type dict[str, pyvisa.highlevel.Resourcelnfo]

3.6. API 53

PyVISA Documentation, Release 1.6.3

open_bare_resource (resource_name, access_mode=<AccessModes.no_lock: 0>,

open_timeout=0)
Open the specified resource without wrapping into a class

Parameters
* resource_name — name or alias of the resource to open.
* access_mode (pyvisa.constants.AccessModes) — access mode.
* open_timeout - time out to open.

Returns Unique logical identifier reference to a session.

open_resource (resource_name, access_mode=<AccessModes.no_lock: 0>, open_timeout=0,

**kwargs)
Return an instrument for the resource name.

Parameters
* resource_name — name or alias of the resource to open.
* access_mode (pyvisa.constants.AccessModes) — access mode.
* open_timeout - time out to open.

* kwargs — keyword arguments to be used to change instrument attributes after construc-
tion.

Return type pyvisa.resources.Resource

resource_info (resource_name)
Get the extended information of a particular resource

Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourceInfo

session
Resource Manager session handle.

Raises pyvisa.errors.InvalidSession if session is closed.

3.6.3 Resource classes
Resources are high level abstractions to managing specific sessions. An instance of one of these classes is returned by
the open_resource () depending on the resource type.
e SerialInstrument
e TCPIPInstrument
e TCPIPSocket
e USBInstrument
¢ USBRaw
* GPIBInstrument
* GPIBInterface
e FirewireInstrument
e PXIInstrument

e PXIInstrument

54 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

¢ VXIInstrument
* VXIMemory
* VXIBackplane

class pyvisa.resources.SerialInstrument (*args, **kwargs)
Communicates with devices of type ASRL<board>[::INSTR]

Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().

CR=u’\r’
LF =u’\n’
allow_dma

This attribute specifies whether I/0 accesses should use DMA (VI_TRUE) or Programmed 1/O
(VLLFALSE). In some implementations, this attribute may have global effects even though it is
documented to be a local attribute. Since this affects performance and not functionality, that behavior
is acceptable.

VISA Attribute VI_ATTR_DMA_ALLOW_EN (1073676318)

Type bool

allow _transmit
If set to VI_FALSE, it suspends transmission as if an XOFF character has been received. If set to

VI_TRUE, it resumes transmission as if an XON character has been received.

VISA Attribute VI_ATTR_ASRL_ALLOW_TRANSMIT (1073676734)
Type bool

assert_trigger ()
Sends a software trigger to the device.

baud_rate

VI_ATTR_ASRL_BAUD is the baud rate of the interface. It is represented as an unsigned 32-bit in-
teger so that any baud rate can be used, but it usually requires a commonly used rate such as 300,
1200, 2400, or 9600 baud.

VISA Attribute VI_ATTR_ASRL_BAUD (1073676321)
Type int
Range 0 <= value <=4294967295
before_close ()
Called just before closing an instrument.
break_length

This controls the duration (in milliseconds) of the break signal asserted when
VI_ATTR_ASRL_END_OUT is set to VI_ASRL_END_BREAK. If you want to control the
assertion state and length of a break signal manually, use the VI_ATTR_ASRL_BREAK_STATE
attribute instead.

VISA Attribute VI_ATTR_ASRL_BREAK_LEN (1073676733)
Type int

3.6. API 55

PyVISA Documentation, Release 1.6.3

Range -32768 <= value <= 32767

break_state

If set to VI_STATE_ASSERTED, it suspends character transmission and places the transmission
line in a break state until this attribute is reset to VI STATE_UNASSERTED. This attribute lets
you manually control the assertion state and length of a break signal. If you want VISA to send a
break signal after each write operation automatically, use the VI_ATTR_ASRL_BREAK_LEN and
VI_ATTR_ASRL_END_OUT attributes instead.

VISA Attribute VI_ATTR_ASRL_BREAK_STATE (1073676732)

Type :class:pyvisa.constants.LineState

bytes_in_buffer
VI_ATTR_ASRL_AVAIL_NUM shows the number of bytes available in the low- level I/O receive
buffer.
VISA Attribute VI_ATTR_ASRL_AVAIL_NUM (1073676460)
Type int
Range 0 <= value <= 4294967295

chunk_size =20480

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

data_bits
VI_ATTR_ASRL_DATA_BITS is the number of data bits contained in each frame (from 5 to 8).
The data bits for each frame are located in the low-order bits of every byte stored in memory.
VISA Attribute VI_ATTR_ASRL_DATA_BITS (1073676322)
Type int

Range 5 <=value <=8

discard null
If set to VI_TRUE, NUL characters are discarded. Otherwise, they are treated as normal data char-
acters. For binary transfers, set this attribute to VI_FALSE.

VISA Attribute VI_ATTR_ASRL_DISCARD_NULL (1073676464)
Type bool

encoding
Encoding used for read and write operations.

end_input

VI_ATTR_ASRL_END_IN indicates the method used to terminate read operations.

VISA Attribute VI_ATTR_ASRL_END_IN (1073676467)

56 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

Type :class:pyvisa.constants.Serial Termination

£lush (mask)

Manually clears the specified buffers and cause the buffer data to be written to the device.

Parameters mask — Specifies the action to be taken with flushing the buffer. (Con-
stants. READ*, WRITE*, .I0%*)

get_visa_attribute (name)

Retrieves the state of an attribute in this resource.
Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.

Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)

Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.

implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)

Type int
Range 0 <= value <= 4294967295

install_handler (event_type, handler, user_handle=None)

Installs handlers for event callbacks in this resource.
Parameters
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle — A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface_number

VI_ATTR_INTF_NUM specifies the board number for the given interface.
VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type

The interface type of the resource as a number.

io_protocol

3.6.

API

57

PyVISA Documentation, Release 1.6.3

VI_ATTR_IO_PROT specifies which protocol to use. In VXI, you can choose normal word serial or
fast data channel (FDC). In GPIB, you can choose normal or high-speed (HS-488) transfers. In serial,
TCPIP, or USB RAW, you can choose normal transfers or 488.2-defined strings. In USB INSTR, you
can choose normal or vendor-specific transfers.

VISA Attribute VI_ATTR_IO_PROT (1073676316)
Type int
Range 0 <= value <= 65535
last_status
Last status code for this session.
Return type pyvisa.constants.StatusCode

lock (timeout=None, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)
Type :class:pyvisa.constants.AccessModes
open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.
Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (inf) — Milliseconds before the open operation times out.
parity
VI_ATTR_ASRL_PARITY is the parity used with every frame transmitted and received.

VISA Attribute VI_ATTR_ASRL_PARITY (1073676323)
Type :class:pyvisa.constants.Parity
query (message, delay=None)
A combination of write(message) and read()
Parameters

* message (sfr) — the message to send.

58 Chapter 3. More information

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#str

PyVISA Documentation, Release 1.6.3

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.
Return type str

query_ascii_values (message, converter=u'f’, separator=u’, ‘, container=<type °‘list’>, de-
lay=None)
Query the device for values in ascii format returning an iterable of values.

Parameters
* message (sfr) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

e converter (callable) — function used to convert each element. Defaults to float

* separator — a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

* container — container type to use for the output data.
Type separator: (str) -> collections.Iterable[int] | str
Returns the answer from the device.
Return type list

query_binary_ values (message, datatype=u’f’, is_big_endian="False, container=<type ‘list’>, de-
lay=None, header_fmt=u’'ieee’)
Converts an iterable of numbers into a block of data in the ieee format.

Parameters
* message — the message to send to the instrument.
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess. Defaults to False.
* container — container type to use for the output data.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Return type bytes
query_delay = 0.0

query_values (message, delay=None)
Query the device for values returning an iterable of values.

The datatype expected is obtained from values_format
Parameters
* message (s1r) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.

Return type list

3.6.

API

59

http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#callable
http://docs.python.org/2/library/functions.html#list
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#list

PyVISA Documentation, Release 1.6.3

read (termination=None, encoding=None)
Read a string from the device.

Reading stops when the device stops sending (e.g. by setting appropriate bus lines), or the termination
characters sequence was detected. Attention: Only the last character of the termination characters is really
used to stop reading, however, the whole sequence is compared to the ending of the read string message.
If they don’t match, a warning is issued.

All line-ending characters are stripped from the end of the string.
Return type str

read raw (size=None)
Read the unmodified string sent from the instrument to the computer.

In contrast to read(), no termination characters are stripped.
Return type bytes

read_stb()
Service request status register.

read_ termination
Read termination character.

read_termination_context (*args, **kwds)

read_values (fimt=None, container=<type ‘list’>)
Read a list of floating point values from the device.

Parameters

» fmt — the format of the values. If given, it overrides the class attribute “values_format”.
Possible values are bitwise disjunctions of the above constants ascii, single, double, and
big_endian. Default is ascii.

* container - the output datatype
Returns the list of read values
Return type list
register (interface_type, resource_class)
replace_char
VI_ATTR_ASRL_REPLACE_CHAR specifies the character to be used to replace incoming charac-
ters that arrive with errors (such as parity error).
VISA Attribute VI_ATTR_ASRL_REPLACE_CHAR (1073676478)
Type int

Range 0 <= value <= 255

resource_class

VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.

VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)

resource_info
Get the extended information of this resource.

60 Chapter 3. More information

http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#list

PyVISA Documentation, Release 1.6.3

Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourcelInfo
resource_manufacturer_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_NAME (3221159938)

send_end
VI_ATTR_SEND_END_EN specifies whether to assert END during the transfer of the last byte of
the buffer.
VISA Attribute VI_ATTR_SEND_END_EN (1073676310)
Type bool
session
Resource session handle.
Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_attribute (name, state)
Sets the state of an attribute.

Parameters
¢ name — Attribute for which the state is to be modified. (Attributes.*)
» state — The state of the attribute to be set for the specified object.
spec_version

VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the

version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.

VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)
Type int
Range 0 <= value <=4294967295

3.6.

API 61

PyVISA Documentation, Release 1.6.3

stb
Service request status register.

stop_bits
VI_ATTR_ASRL_STOP_BITS is the number of stop bits used to indicate the end of a frame. The
value VI_ASRL_STOP_ONES indicates one-and-one- half (1.5) stop bits.
VISA Attribute VI_ATTR_ASRL_STOP_BITS (1073676324)
Type :class:pyvisa.constants.StopBits
timeout
The timeout in milliseconds for all resource I/O operations.
None is mapped to VI_TMO_INFINITE. A value less than 1 is mapped to VI TMO_IMMEDIATE.

uninstall_handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle — A value specified by an application that can be used for identifying
handlers uniquely in a session for an event.

unlock ()
Relinquishes a lock for the specified resource.

values_format
visa_attributes_classes = [<class ‘pyvisa.attributes.AttrVI_ATTR_ASRL_REPLACE_CHAR’>, <class ‘pyvisa.a

write (message, termination=None, encoding=None)
Write a string message to the device.

The write_termination is always appended to it.
Parameters message (unicode (Py2) or str (Py3)) — the message to be sent.
Returns number of bytes written.
Return type int

write_ascii_values (message, values, converter=u’f’, separator=u’, ‘, termination=None, encod-
ing=None)
Write a string message to the device followed by values in ascii format.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3)) — the message to be sent.
¢ values — data to be writen to the device.

* converter (callable | str) — function used to convert each value. String formatting
codes are also accepted. Defaults to str.

* separator - a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

Type separator: (collections.Iterable[T]) -> str | str

62

Chapter 3. More information

http://docs.python.org/2/library/functions.html#int

PyVISA Documentation, Release 1.6.3

Returns number of bytes written.
Return type int

write_binary values (message, values, datatype=u’f’, is_big_endian=False, termination=None,
encoding=None)
Write a string message to the device followed by values in binary format.

The write_termination is always appended to it.

Parameters
* message (unicode (Py2) or str (Py3)) — the message to be sent.
* values — data to be writen to the device.
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess.

Returns number of bytes written.

Return type int

write_raw (message)
Write a byte message to the device.

Parameters message (byfes) — the message to be sent.
Returns number of bytes written.
Return type int

write_termination
Weriter termination character.

write_values (message, values, termination=None, encoding=None)
xoff char

VI_ATTR_ASRL_XOFF_CHAR specifies the value of the XOFF character used for XON/XOFF
flow control (both directions). If XON/XOFF flow control (software handshaking) is not being used,
the value of this attribute is ignored.

VISA Attribute VI_ATTR_ASRL_XOFF_CHAR (1073676482)

Type int
Range 0 <= value <= 255

xon_char
VI_ATTR_ASRL_XON_CHAR specifies the value of the XON character used for XON/XOFF flow
control (both directions). If XON/XOFF flow control (software handshaking) is not being used, the
value of this attribute is ignored.
VISA Attribute VI_ATTR_ASRL_XON_CHAR (1073676481)
Type int
Range 0 <= value <= 255

class pyvisa.resources.TCPIPInstrument (*args, **kwargs)
Communicates with to devices of type TCPIP::host address[::INSTR]

3.6. API 63

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int

PyVISA Documentation, Release 1.6.3

More complex resource names can be specified with the following grammar: TCPIP[board]::host ad-
dress[::LAN device name][::INSTR]

Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().

CR=u’\r’
LF =u’\n’
allow_dma

This attribute specifies whether I/0 accesses should use DMA (VI_TRUE) or Programmed 1/O
(VI_FALSE). In some implementations, this attribute may have global effects even though it is
documented to be a local attribute. Since this affects performance and not functionality, that behavior
is acceptable.

VISA Attribute VI_ATTR_DMA_ALLOW_EN (1073676318)
Type bool
assert_trigger ()

Sends a software trigger to the device.

before_close ()
Called just before closing an instrument.

chunk_size =20480

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

encoding
Encoding used for read and write operations.

get_visa_attribute (name)
Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.
Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.
implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)
Type int
Range 0 <= value <=4294967295

64

Chapter 3. More information

PyVISA Documentation, Release 1.6.3

install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.

Parameters
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

last_status
Last status code for this session.

Return type pyvisa.constants.StatusCode

lock (timeout=None, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)
Type :class:pyvisa.constants.AccessModes
open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.
Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (inf) — Milliseconds before the open operation times out.

3.6.

API 65

http://docs.python.org/2/library/functions.html#int

PyVISA Documentation, Release 1.6.3

query (message, delay=None)
A combination of write(message) and read()

Parameters
* message (s7r) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.

Return type str

¢

query_ascii_values (message, converter=u’f’, separator=u’,

lay=None)
Query the device for values in ascii format returning an iterable of values.

, container=<type ‘list’>, de-

Parameters
* message (sfr) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

e converter (callable) — function used to convert each element. Defaults to float

* separator — a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

* container — container type to use for the output data.
Type separator: (str) -> collections.Iterable[int] | str
Returns the answer from the device.
Return type list

query_binary_ values (message, datatype=u’f’, is_big_endian="False, container=<type ‘list’>, de-
lay=None, header_fmt=u’'ieee’)
Converts an iterable of numbers into a block of data in the ieee format.

Parameters
* message — the message to send to the instrument.
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess. Defaults to False.
* container — container type to use for the output data.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Return type bytes
query_delay = 0.0

query_values (message, delay=None)
Query the device for values returning an iterable of values.

The datatype expected is obtained from values_format
Parameters

* message (sfr) — the message to send.

66 Chapter 3. More information

http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#callable
http://docs.python.org/2/library/functions.html#list
http://docs.python.org/2/library/functions.html#str

PyVISA Documentation, Release 1.6.3

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.
Return type list

read (termination=None, encoding=None)
Read a string from the device.

Reading stops when the device stops sending (e.g. by setting appropriate bus lines), or the termination
characters sequence was detected. Attention: Only the last character of the termination characters is really
used to stop reading, however, the whole sequence is compared to the ending of the read string message.
If they don’t match, a warning is issued.

All line-ending characters are stripped from the end of the string.
Return type str

read raw (size=None)
Read the unmodified string sent from the instrument to the computer.

In contrast to read(), no termination characters are stripped.
Return type bytes

read_stb ()
Service request status register.

read_ termination
Read termination character.

read_termination_context (*args, **kwds)

read_values (fimt=None, container=<type ‘list’>)
Read a list of floating point values from the device.

Parameters

e fmt — the format of the values. If given, it overrides the class attribute “values_format”.
Possible values are bitwise disjunctions of the above constants ascii, single, double, and
big_endian. Default is ascii.

* container - the output datatype
Returns the list of read values
Return type list
register (interface_type, resource_class)
resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourcelInfo

resource_manufacturer_ name

3.6.

API 67

http://docs.python.org/2/library/functions.html#list
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#list

PyVISA Documentation, Release 1.6.3

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the

vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the

vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_NAME (3221159938)

send_end

VI_ATTR_SEND_END_EN specifies whether to assert END during the transfer of the last byte of

the buffer.

VISA Attribute VI_ATTR_SEND_END_EN (1073676310)
Type bool

session

Resource session handle.

Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_attribute (name, state)

Sets the state of an attribute.

Parameters
* name — Attribute for which the state is to be modified. (Attributes.*)

* state — The state of the attribute to be set for the specified object.

spec_version

stb

VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of

the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.

VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)
Type int
Range 0 <= value <= 4294967295

Service request status register.

68

Chapter 3. More information

PyVISA Documentation, Release 1.6.3

timeout
The timeout in milliseconds for all resource I/O operations.

None is mapped to VI_TMO_INFINITE. A value less than 1 is mapped to VI_TMO_IMMEDIATE.

uninstall_ handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle — A value specified by an application that can be used for identifying
handlers uniquely in a session for an event.

unlock ()
Relinquishes a lock for the specified resource.

values_format
visa_attributes_classes = [<class ‘pyvisa.attributes.AttrVI_ATTR_SEND_END_EN’>, <class ‘pyvisa.attributes.

write (message, termination=None, encoding=None)
Write a string message to the device.

The write_termination is always appended to it.
Parameters message (unicode (Py2) or str (Py3)) — the message to be sent.
Returns number of bytes written.
Return type int

write_ascii_values (message, values, converter=u’f’, separator=u’, ‘, termination=None, encod-
ing=None)
Write a string message to the device followed by values in ascii format.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3)) — the message to be sent.
¢ values — data to be writen to the device.

* converter (callable | str) — function used to convert each value. String formatting
codes are also accepted. Defaults to str.

* separator - a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

Type separator: (collections.Iterable[T]) -> str | str
Returns number of bytes written.
Return type int

write_binary values (message, values, datatype=u’f’, is_big_endian="False, termination=None,

encoding=None)
Write a string message to the device followed by values in binary format.

The write_termination is always appended to it.

Parameters

3.6.

API 69

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int

PyVISA Documentation, Release 1.6.3

* message (unicode (Py2) or str (Py3)) — the message to be sent.
* values — data to be writen to the device.
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess.
Returns number of bytes written.
Return type int

write_raw (message)
Write a byte message to the device.

Parameters message (byfes) — the message to be sent.
Returns number of bytes written.
Return type int

write_termination
Weriter termination character.

write_values (message, values, termination=None, encoding=None)

class pyvisa.resources.TCPIPSocket (*args, **kwargs)
Communicates with to devices of type TCPIP::host address::port:: SOCKET

More complex resource names can be specified with the following grammar: TCPIP[board]::host
dress::port::SOCKET

Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().

CR=u’\r’
LF =u’\n’

assert_trigger ()
Sends a software trigger to the device.

before_close ()
Called just before closing an instrument.

chunk_size =20480

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

encoding
Encoding used for read and write operations.

get_visa_attribute (name)
Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.
Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants - constants identifying the warnings to ignore.

ad-

70 Chapter 3. More information

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int

PyVISA Documentation, Release 1.6.3

implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)
Type int
Range 0 <= value <= 4294967295
install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.
Parameters

* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface_number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

io_protocol

VI_ATTR_IO_PROT specifies which protocol to use. In VXI, you can choose normal word serial or
fast data channel (FDC). In GPIB, you can choose normal or high-speed (HS-488) transfers. In serial,
TCPIP, or USB RAW, you can choose normal transfers or 488.2-defined strings. In USB INSTR, you
can choose normal or vendor-specific transfers.

VISA Attribute VI_ATTR_IO_PROT (1073676316)

Type int
Range 0 <= value <= 65535
last_status
Last status code for this session.
Return type pyvisa.constants.StatusCode

lock (timeout=None, requested_key=None)
Establish a shared lock to the resource.

Parameters

3.6.

API 71

PyVISA Documentation, Release 1.6.3

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)
Type :class:pyvisa.constants.AccessModes
open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.
Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (int) — Milliseconds before the open operation times out.

query (message, delay=None)
A combination of write(message) and read()

Parameters
* message (s77) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.

Return type str

i

query_ascii_values (message, converter=u'f’, separator=u’,
lay=None)
Query the device for values in ascii format returning an iterable of values.

, container=<type ‘list’>, de-

Parameters
* message (str) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

e converter (callable) — function used to convert each element. Defaults to float

* separator — a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

* container — container type to use for the output data.
Type separator: (str) -> collections.Iterable[int] | str
Returns the answer from the device.

Return type list

72 Chapter 3. More information

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#callable
http://docs.python.org/2/library/functions.html#list

PyVISA Documentation, Release 1.6.3

query_binary values (message, datatype=u’f’, is_big_endian="False, container=<type ‘list’>, de-

lay=None, header_fmt=u’ieee’)
Converts an iterable of numbers into a block of data in the ieee format.

Parameters

* message — the message to send to the instrument.

* datatype - the format string for a single element. See struct module.

* is_big_endian - boolean indicating endianess. Defaults to False.

* container — container type to use for the output data.

* delay - delay in seconds between write and read operations.

self.query_delay
Return type bytes
query_delay = 0.0

query_values (message, delay=None)
Query the device for values returning an iterable of values.

The datatype expected is obtained from values_format
Parameters

* message (sfr) — the message to send.

* delay - delay in seconds between write and read operations.

self.query_delay
Returns the answer from the device.
Return type list

read (termination=None, encoding=None)
Read a string from the device.

if None, defaults to

if None, defaults to

Reading stops when the device stops sending (e.g. by setting appropriate bus lines), or the termination
characters sequence was detected. Attention: Only the last character of the termination characters is really
used to stop reading, however, the whole sequence is compared to the ending of the read string message.

If they don’t match, a warning is issued.
All line-ending characters are stripped from the end of the string.
Return type str

read_raw (size=None)
Read the unmodified string sent from the instrument to the computer.

In contrast to read(), no termination characters are stripped.
Return type bytes

read_stb ()
Service request status register.

read_termination
Read termination character.

read_termination_context (*args, **kwds)

read_values (fint=None, container=<type ‘list’>)
Read a list of floating point values from the device.

Parameters

3.6.

API

73

http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#list
http://docs.python.org/2/library/functions.html#str

PyVISA Documentation, Release 1.6.3

e fmt — the format of the values. If given, it overrides the class attribute “values_format”.
Possible values are bitwise disjunctions of the above constants ascii, single, double, and
big_endian. Default is ascii.

* container - the output datatype
Returns the list of read values
Return type list
register (interface_type, resource_class)
resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourcelInfo
resource_manufacturer_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as

the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_NAME (3221159938)
session
Resource session handle.

Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_attribute (name, state)
Sets the state of an attribute.

Parameters
¢ name — Attribute for which the state is to be modified. (Attributes.*)
» state — The state of the attribute to be set for the specified object.

spec_version

74 Chapter 3. More information

http://docs.python.org/2/library/functions.html#list

PyVISA Documentation, Release 1.6.3

VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.

VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)
Type int
Range 0 <= value <= 4294967295

stb

Service request status register.

timeout
The timeout in milliseconds for all resource I/O operations.

None is mapped to VI_TMO_INFINITE. A value less than 1 is mapped to VI_TMO_IMMEDIATE.

uninstall_handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely in a session for an event.

unlock ()
Relinquishes a lock for the specified resource.

values_format
visa_attributes_classes = [<class ‘pyvisa.attributes.AttrVI_ATTR_TERMCHAR’>, <class ‘pyvisa.attributes.Att

write (message, termination=None, encoding=None)
Write a string message to the device.

The write_termination is always appended to it.
Parameters message (unicode (Py2) or str (Py3)) — the message to be sent.
Returns number of bytes written.
Return type int

write_ascii_values (message, values, converter=u’f’, separator=u’, ‘, termination=None, encod-
ing=None)
Write a string message to the device followed by values in ascii format.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3)) — the message to be sent.
* values — data to be writen to the device.

* converter (callable | str) — function used to convert each value. String formatting
codes are also accepted. Defaults to str.

3.6.

API 75

http://docs.python.org/2/library/functions.html#int

PyVISA Documentation, Release 1.6.3

* separator — a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

Type separator: (collections.Iterable[T]) -> str | str
Returns number of bytes written.
Return type int

write_binary values (message, values, datatype=u’f’, is_big_endian="False, termination=None,
encoding=None)
Write a string message to the device followed by values in binary format.

The write_termination is always appended to it.

Parameters
* message (unicode (Py2) or str (Py3)) — the message to be sent.
* values — data to be writen to the device.
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess.

Returns number of bytes written.

Return type int

write_raw (message)
Write a byte message to the device.

Parameters message (byfes) — the message to be sent.
Returns number of bytes written.
Return type int

write_termination
Writer termination character.

write_values (message, values, termination=None, encoding=None)

class pyvisa.resources.USBInstrument (*args, **kwargs)
Communicates with devices of type USB::manufacturer ID::model code::serial number

More complex resource names can be specified with the following grammar: USB[board]::manufacturer
ID::model code::serial number[::USB interface number][::INSTR]

Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().
CR=u’\r’
LF =u’\n’

assert_trigger()
Sends a software trigger to the device.

before_close ()
Called just before closing an instrument.

chunk_size =20480

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

76 Chapter 3. More information

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int

PyVISA Documentation, Release 1.6.3

control_in (request_type_bitmap_field, request_id, request_value, index, length=0)
Performs a USB control pipe transfer from the device.

Parameters

* request_type bitmap_field - bmRequestType parameter of the setup stage of a
USB control transfer.

* request_id - bRequest parameter of the setup stage of a USB control transfer.
* request_value — wValue parameter of the setup stage of a USB control transfer.

¢ index — windex parameter of the setup stage of a USB control transfer. This is usually
the index of the interface or endpoint.

* length — wLength parameter of the setup stage of a USB control transfer. This value
also specifies the size of the data buffer to receive the data from the optional data stage of
the control transfer.

Returns The data buffer that receives the data from the optional data stage of the control transfer.
Return type bytes

encoding
Encoding used for read and write operations.

get_visa_attribute (name)
Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.
Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.
implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)
Type int
Range 0 <= value <= 4294967295
install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.
Parameters

* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

3.6. API 77

PyVISA Documentation, Release 1.6.3

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

io_protocol

VI_ATTR_IO_PROT specifies which protocol to use. In VXI, you can choose normal word serial or
fast data channel (FDC). In GPIB, you can choose normal or high-speed (HS-488) transfers. In serial,
TCPIP, or USB RAW, you can choose normal transfers or 488.2-defined strings. In USB INSTR, you
can choose normal or vendor-specific transfers.

VISA Attribute VI_ATTR_IO_PROT (1073676316)

Type int
Range 0 <= value <= 65535

is_4882_compliant
VI_ATTR_4882_COMPLIANT specifies whether the device is 488.2 compliant.

VISA Attribute VI_ATTR_4882_COMPLIANT (1073676703)
Type bool
last_status
Last status code for this session.
Return type pyvisa.constants.StatusCode

lock (timeout=None, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource

can be unlocked, locked with an exclusive lock, or locked with a shared lock.

VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)

78 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

Type :class:pyvisa.constants.AccessModes

manufacturer_id

VI_ATTR_MANF_ID is the manufacturer identification number of the device.

VISA Attribute VI_ATTR_MANF_ID (1073676505)
Type int
Range 0 <= value <= 65535
manufacturer_name
This string attribute is the manufacturer name.
VISA Attribute VI_ATTR_MANF_NAME (3221160050)
maximum_interrupt_size

VI_ATTR_USB_MAX_INTR_SIZE specifies the maximum size of data that will be stored by any
given USB interrupt. If a USB interrupt contains more data than this size, the data in excess of
this size will be lost.

VISA Attribute VI_ATTR_USB_MAX_INTR_SIZE (1073676719)
Type int
Range 0 <= value <= 65535
model_code
VI_ATTR_MODEL_CODE specifies the model code for the device.
VISA Attribute VI_ATTR_MODEL_CODE (1073676511)
Type int
Range 0 <= value <= 65535

model_ name
This string attribute is the model name of the device.

VISA Attribute VI_ATTR_MODEL_NAME (3221160055)

open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.

Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (inf) — Milliseconds before the open operation times out.

query (message, delay=None)
A combination of write(message) and read()

Parameters
* message (sfr) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.

3.6.

API 79

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#str

PyVISA Documentation, Release 1.6.3

Return type str

i

query_ascii_values (message, converter=u’f’, separator=u’,
lay=None)
Query the device for values in ascii format returning an iterable of values.

, container=<type ‘list’>, de-

Parameters
* message (sfr) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

e converter (callable) — function used to convert each element. Defaults to float

* separator — a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

* container — container type to use for the output data.
Type separator: (str) -> collections.Iterable[int] | str
Returns the answer from the device.
Return type list

query_binary values (message, datatype=u’f’, is_big_endian="False, container=<type ‘list’>, de-
lay=None, header_fmt=u’'ieee’)
Converts an iterable of numbers into a block of data in the ieee format.

Parameters
* message — the message to send to the instrument.
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess. Defaults to False.
* container — container type to use for the output data.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Return type bytes
query_delay = 0.0

query_values (message, delay=None)
Query the device for values returning an iterable of values.

The datatype expected is obtained from values_format
Parameters
* message (sfr) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.
Return type list

read (termination=None, encoding=None)
Read a string from the device.

Reading stops when the device stops sending (e.g. by setting appropriate bus lines), or the termination
characters sequence was detected. Attention: Only the last character of the termination characters is really

80 Chapter 3. More information

http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#callable
http://docs.python.org/2/library/functions.html#list
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#list

PyVISA Documentation, Release 1.6.3

used to stop reading, however, the whole sequence is compared to the ending of the read string message.
If they don’t match, a warning is issued.

All line-ending characters are stripped from the end of the string.
Return type str

read raw (size=None)
Read the unmodified string sent from the instrument to the computer.

In contrast to read(), no termination characters are stripped.
Return type bytes

read_stb()
Service request status register.

read_termination
Read termination character.

read_termination_context (*args, **kwds)

read_values (fimt=None, container=<type ‘list’>)
Read a list of floating point values from the device.

Parameters

* fmt — the format of the values. If given, it overrides the class attribute “values_format”.
Possible values are bitwise disjunctions of the above constants ascii, single, double, and
big_endian. Default is ascii.

* container - the output datatype
Returns the list of read values
Return type list
register (interface_type, resource_class)
resource_class

VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.

VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourceInfo

resource_manufacturer_ name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

3.6.

API 81

http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#list

PyVISA Documentation, Release 1.6.3

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_NAME (3221159938)

send_end
VI_ATTR_SEND_END_EN specifies whether to assert END during the transfer of the last byte of
the buffer.
VISA Attribute VI_ATTR_SEND_END_EN (1073676310)
Type bool
serial_ number
VI_ATTR_USB_SERIAL_NUM specifies the USB serial number of this device.
VISA Attribute VI_ATTR_USB_SERIAL_NUM (3221160352)

session
Resource session handle.

Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_attribute (name, state)
Sets the state of an attribute.

Parameters
¢ name — Attribute for which the state is to be modified. (Attributes.*)
» state - The state of the attribute to be set for the specified object.
spec_version

VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.

VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)
Type int
Range 0 <= value <= 4294967295
stb
Service request status register.

timeout
The timeout in milliseconds for all resource I/O operations.

None is mapped to VI_TMO_INFINITE. A value less than 1 is mapped to VI_TMO_IMMEDIATE.

uninstall_handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters

82 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely in a session for an event.

unlock ()
Relinquishes a lock for the specified resource.

usb_control_out (request_type_bitmap_field, request_id, request_value, index, data=u’")
Performs a USB control pipe transfer to the device.

Parameters

* request_type_bitmap_field - bmRequestType parameter of the setup stage of a
USB control transfer.

* request_id — bRequest parameter of the setup stage of a USB control transfer.
* request_value — wValue parameter of the setup stage of a USB control transfer.

* index — windex parameter of the setup stage of a USB control transfer. This is usually
the index of the interface or endpoint.

* data - The data buffer that sends the data in the optional data stage of the control transfer.

usb_protocol
VI_ATTR_USB_PROTOCOL specifies the USB protocol used by this USB interface.

VISA Attribute VI_ATTR_USB_PROTOCOL (1073676711)
Type int

Range 0 <= value <= 255

values_format
visa_attributes_classes = [<class ‘pyvisa.attributes.AttrVI_ATTR_USB_SERIAL_NUM’>, <class ‘pyvisa.attribt

write (message, termination=None, encoding=None)
Write a string message to the device.

The write_termination is always appended to it.
Parameters message (unicode (Py2) or str (Py3)) — the message to be sent.
Returns number of bytes written.
Return type int

write_ascii_values (message, values, converter=u’f’, separator=u’, ‘, termination=None, encod-
ing=None)
Write a string message to the device followed by values in ascii format.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3)) — the message to be sent.
* values — data to be writen to the device.

* converter (callable | str) — function used to convert each value. String formatting
codes are also accepted. Defaults to str.

3.6.

API 83

http://docs.python.org/2/library/functions.html#int

PyVISA Documentation, Release 1.6.3

* separator — a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

Type separator: (collections.Iterable[T]) -> str | str
Returns number of bytes written.
Return type int

write_binary values (message, values, datatype=u’f’, is_big_endian="False, termination=None,
encoding=None)
Write a string message to the device followed by values in binary format.

The write_termination is always appended to it.

Parameters
* message (unicode (Py2) or str (Py3)) — the message to be sent.
* values — data to be writen to the device.
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess.

Returns number of bytes written.

Return type int

write_raw (message)
Write a byte message to the device.

Parameters message (byfes) — the message to be sent.
Returns number of bytes written.
Return type int

write_termination
Writer termination character.

write_values (message, values, termination=None, encoding=None)

class pyvisa.resources.USBRaw (*args, **kwargs)
Communicates with to devices of type USB::manufacturer ID::model code::serial number::RAW

More complex resource names can be specified with the following grammar: USB[board]::manufacturer
ID::model code::serial number[::USB interface number]::RAW

Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().
CR=u’\r’
LF =u’\n’

assert_trigger()
Sends a software trigger to the device.

before_close ()
Called just before closing an instrument.

chunk_size =20480

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

84 Chapter 3. More information

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int

PyVISA Documentation, Release 1.6.3

encoding

Encoding used for read and write operations.

get_visa_attribute (name)

Retrieves the state of an attribute in this resource.
Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.

Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)

Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.

implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)

Type int
Range 0 <= value <=4294967295

install_handler (event_type, handler, user_handle=None)

Installs handlers for event callbacks in this resource.
Parameters
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle — A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface number

VI_ATTR_INTF_NUM specifies the board number for the given interface.
VISA Attribute VI_ATTR_INTF_NUM (1073676662)

Type int
Range 0 <= value <= 65535

interface_type

The interface type of the resource as a number.

io_protocol

VI_ATTR_IO_PROT specifies which protocol to use. In VXI, you can choose normal word serial or
fast data channel (FDC). In GPIB, you can choose normal or high-speed (HS-488) transfers. In serial,
TCPIP, or USB RAW, you can choose normal transfers or 488.2-defined strings. In USB INSTR, you
can choose normal or vendor-specific transfers.

3.6.

API

85

PyVISA Documentation, Release 1.6.3

VISA Attribute VI_ATTR_IO_PROT (1073676316)
Type int
Range 0 <= value <= 65535
last_status
Last status code for this session.
Return type pyvisa.constants.StatusCode

lock (timeout=None, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)

Type :class:pyvisa.constants.AccessModes

manufacturer_id

VI_ATTR_MANF_ID is the manufacturer identification number of the device.

VISA Attribute VI_ATTR_MANF_ID (1073676505)
Type int
Range 0 <= value <= 65535
manufacturer_name
This string attribute is the manufacturer name.
VISA Attribute VI_ATTR_MANF_NAME (3221160050)
maximum_interrupt_size

VI_ATTR_USB_MAX_INTR_SIZE specifies the maximum size of data that will be stored by any
given USB interrupt. If a USB interrupt contains more data than this size, the data in excess of
this size will be lost.

VISA Attribute VI_ATTR_USB_MAX_ INTR_SIZE (1073676719)

Type int
Range 0 <= value <= 65535

model_code
VI_ATTR_MODEL_CODE specifies the model code for the device.

86 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

VISA Attribute VI_ATTR_MODEL_CODE (1073676511)
Type int
Range 0 <= value <= 65535

model name
This string attribute is the model name of the device.

VISA Attribute VI_ATTR_MODEL_NAME (3221160055)

open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.

Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (inf) — Milliseconds before the open operation times out.

query (message, delay=None)
A combination of write(message) and read()

Parameters
* message (sfr) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.

Return type str

I

query_ascii_values (message, converter=u’f’, separator=u’,

lay=None)
Query the device for values in ascii format returning an iterable of values.

, container=<type ‘list’>, de-

Parameters
* message (sfr) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

e converter (callable) — function used to convert each element. Defaults to float

* separator — a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

* container - container type to use for the output data.
Type separator: (str) -> collections.Iterable[int] | str
Returns the answer from the device.
Return type list

query_binary_ values (message, datatype=u’f’, is_big_endian=False, container=<type ‘list’>, de-
lay=None, header_fimt=u’'ieee’)
Converts an iterable of numbers into a block of data in the ieee format.

Parameters
* message — the message to send to the instrument.

* datatype - the format string for a single element. See struct module.

3.6.

API 87

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#callable
http://docs.python.org/2/library/functions.html#list

PyVISA Documentation, Release 1.6.3

* is_big_endian - boolean indicating endianess. Defaults to False.
* container — container type to use for the output data.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Return type bytes
query_delay = 0.0

query_values (message, delay=None)
Query the device for values returning an iterable of values.

The datatype expected is obtained from values_format
Parameters
* message (str) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.
Return type list

read (termination=None, encoding=None)
Read a string from the device.

Reading stops when the device stops sending (e.g. by setting appropriate bus lines), or the termination
characters sequence was detected. Attention: Only the last character of the termination characters is really
used to stop reading, however, the whole sequence is compared to the ending of the read string message.
If they don’t match, a warning is issued.

All line-ending characters are stripped from the end of the string.
Return type str

read_ raw (size=None)
Read the unmodified string sent from the instrument to the computer.

In contrast to read(), no termination characters are stripped.
Return type bytes

read_stb ()
Service request status register.

read termination
Read termination character.

read_termination_context (*args, **kwds)

read_values (fimt=None, container=<type ‘list’>)
Read a list of floating point values from the device.

Parameters

e fmt — the format of the values. If given, it overrides the class attribute “values_format”.
Possible values are bitwise disjunctions of the above constants ascii, single, double, and
big_endian. Default is ascii.

* container — the output datatype

Returns the list of read values

88 Chapter 3. More information

http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#list
http://docs.python.org/2/library/functions.html#str

PyVISA Documentation, Release 1.6.3

Return type list
register (interface_type, resource_class)

resource_class

VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the

canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourcelInfo

resource_manufacturer_ name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name

the

vendor that implemented the VISA library. This attribute is not related to the device manufacturer

attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as

the value can differ between VISA implementations and/or revisions.
VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name

the

vendor that implemented the VISA library. This attribute is not related to the device manufacturer

attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as

the value can differ between VISA implementations and/or revisions.
VISA Attribute VI_ATTR_RSRC_NAME (3221159938)

serial_ number

VI_ATTR_USB_SERIAL_NUM specifies the USB serial number of this device.

VISA Attribute VI_ATTR_USB_SERIAL_NUM (3221160352)

session
Resource session handle.

Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_ attribute (name, state)
Sets the state of an attribute.

Parameters
¢ name — Attribute for which the state is to be modified. (Attributes.*)
» state — The state of the attribute to be set for the specified object.

spec_version

. API

89

http://docs.python.org/2/library/functions.html#list

PyVISA Documentation, Release 1.6.3

VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.

VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)
Type int
Range 0 <= value <= 4294967295

stb

Service request status register.

timeout
The timeout in milliseconds for all resource I/O operations.

None is mapped to VI_TMO_INFINITE. A value less than 1 is mapped to VI_TMO_IMMEDIATE.

uninstall_handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely in a session for an event.

unlock ()
Relinquishes a lock for the specified resource.

usb_protocol
VI_ATTR_USB_PROTOCOL specifies the USB protocol used by this USB interface.

VISA Attribute VI_ATTR_USB_PROTOCOL (1073676711)
Type int

Range 0 <= value <= 255

values_format
visa_attributes_classes = [<class ‘pyvisa.attributes.AttrVI_ATTR_MODEL_CODE’>, <class ‘pyvisa.attributes.:

write (message, termination=None, encoding=None)
Write a string message to the device.

The write_termination is always appended to it.
Parameters message (unicode (Py2) or str (Py3)) — the message to be sent.
Returns number of bytes written.
Return type int

write_ascii_values (message, values, converter=u’f’, separator=u’, ‘, termination=None, encod-
ing=None)
Write a string message to the device followed by values in ascii format.

90 Chapter 3. More information

http://docs.python.org/2/library/functions.html#int

PyVISA Documentation, Release 1.6.3

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3)) — the message to be sent.
¢ values — data to be writen to the device.

* converter (callable | str) — function used to convert each value. String formatting
codes are also accepted. Defaults to str.

* separator - a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

Type separator: (collections.Iterable[T]) -> str | str
Returns number of bytes written.

Return type int

write_binary values (message, values, datatype=u’f’, is_big_endian="False, termination=None,
encoding=None)
Write a string message to the device followed by values in binary format.

The write_termination is always appended to it.

Parameters
* message (unicode (Py2) or str (Py3)) — the message to be sent.
* values — data to be writen to the device.
* datatype — the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess.

Returns number of bytes written.

Return type int

write_raw (message)
Write a byte message to the device.

Parameters message (byfes) — the message to be sent.
Returns number of bytes written.
Return type int

write_termination
Writer termination character.

write_values (message, values, termination=None, encoding=None)

class pyvisa.resources.GPIBInstrument (*args, **kwargs)
Communicates with to devices of type GPIB::<primary address>[::INSTR]

More complex resource names can be specified with the following grammar: GPIB[board]::primary
address[::secondary address][::INSTR]

Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().

CR=u’\r’
LF =u’\n’
allow_dma

3.6. API 91

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int

PyVISA Documentation, Release 1.6.3

This attribute specifies whether I/0 accesses should use DMA (VI_TRUE) or Programmed I/O
(VI_FALSE). In some implementations, this attribute may have global effects even though it is
documented to be a local attribute. Since this affects performance and not functionality, that behavior
is acceptable.

VISA Attribute VI_ATTR_DMA_ALLOW_EN (1073676318)
Type bool

assert_trigger ()
Sends a software trigger to the device.

before close ()
chunk_size =20480

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

control_atn (mode)
Specifies the state of the ATN line and the local active controller state.

Corresponds to viGpibControl ATN function of the VISA library.

Parameters mode — Specifies the state of the ATN line and optionally the local active controller
state. (Constants.GPIB_ATN¥*)

Returns return value of the library call.
Return type VISAStatus

control_ren (mode)
Controls the state of the GPIB Remote Enable (REN) interface line, and optionally the remote/local state
of the device.

Corresponds to viGpibControlREN function of the VISA library.

Parameters mode — Specifies the state of the REN line and optionally the device remote/local
state. (Constants.GPIB_REN¥*)

Returns return value of the library call.
Return type VISAStatus
enable_repeat_addressing
VI_ATTR_GPIB_READDR_EN specifies whether to use repeat addressing before each read or write
operation.
VISA Attribute VI_ATTR_GPIB_READDR_EN (1073676315)
Type bool

enable_unaddressing

VI_ATTR_GPIB_UNADDR_EN specifies whether to unaddress the device (UNT and UNL) after
each read or write operation.

VISA Attribute VI_ATTR_GPIB_UNADDR_EN (1073676676)
Type bool

92 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

encoding

Encoding used for read and write operations.

get_visa_attribute (name)

Retrieves the state of an attribute in this resource.
Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.

Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)

Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.

implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)

Type int
Range 0 <= value <=4294967295

install_handler (event_type, handler, user_handle=None)

Installs handlers for event callbacks in this resource.
Parameters
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle — A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface number

VI_ATTR_INTF_NUM specifies the board number for the given interface.
VISA Attribute VI_ATTR_INTF_NUM (1073676662)

Type int
Range 0 <= value <= 65535

interface_type

The interface type of the resource as a number.

io_protocol

VI_ATTR_IO_PROT specifies which protocol to use. In VXI, you can choose normal word serial or
fast data channel (FDC). In GPIB, you can choose normal or high-speed (HS-488) transfers. In serial,
TCPIP, or USB RAW, you can choose normal transfers or 488.2-defined strings. In USB INSTR, you
can choose normal or vendor-specific transfers.

3.6.

API

93

PyVISA Documentation, Release 1.6.3

VISA Attribute VI_ATTR_IO_PROT (1073676316)
Type int
Range 0 <= value <= 65535

last_status
Last status code for this session.

Return type pyvisa.constants.StatusCode

lock (timeout=None, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_state

VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)
Type :class:pyvisa.constants.AccessModes
open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.

Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (inf) — Milliseconds before the open operation times out.

pass_control (primary_address, secondary_address)
Tell the GPIB device at the specified address to become controller in charge (CIC).

Corresponds to viGpibPassControl function of the VISA library.

Parameters

* primary_address — Primary address of the GPIB device to which you want to pass
control.

* secondary_address — Secondary address of the targeted GPIB device. If the tar-

geted device does not have a secondary address, this parameter should contain the value
Constants. NO_SEC_ADDR.

Returns return value of the library call.
Return type VISAStatus

primary_address

94 Chapter 3. More information

http://docs.python.org/2/library/functions.html#int

PyVISA Documentation, Release 1.6.3

VI_ATTR_GPIB_PRIMARY_ADDR specifies the primary address of the GPIB device used by the
given session. For the GPIB INTFC Resource, this attribute is Read-Write.

VISA Attribute VI_ATTR_GPIB_PRIMARY_ADDR (1073676658)
Type int

Range 0 <= value <=30
query (message, delay=None)
A combination of write(message) and read()
Parameters
* message (sfr) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.

Return type str

¢

query_ascii_values (message, converter=u’f’, separator=u’,
lay=None)
Query the device for values in ascii format returning an iterable of values.

, container=<type ‘list’>, de-

Parameters
* message (str) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

e converter (callable) — function used to convert each element. Defaults to float

* separator - a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

* container — container type to use for the output data.
Type separator: (str) -> collections.Iterable[int] | str
Returns the answer from the device.
Return type list

query_binary values (message, datatype=u’f’, is_big_endian="False, container=<type ‘list’>, de-
lay=None, header_fmt=u’ieee’)
Converts an iterable of numbers into a block of data in the ieee format.

Parameters
* message — the message to send to the instrument.
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess. Defaults to False.
* container — container type to use for the output data.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Return type bytes
query_delay = 0.0

3.6.

API 95

http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#callable
http://docs.python.org/2/library/functions.html#list

PyVISA Documentation, Release 1.6.3

query_values (message, delay=None)
Query the device for values returning an iterable of values.

The datatype expected is obtained from values_format
Parameters
* message (sfr) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.
Return type list

read (termination=None, encoding=None)
Read a string from the device.

Reading stops when the device stops sending (e.g. by setting appropriate bus lines), or the termination
characters sequence was detected. Attention: Only the last character of the termination characters is really
used to stop reading, however, the whole sequence is compared to the ending of the read string message.
If they don’t match, a warning is issued.

All line-ending characters are stripped from the end of the string.
Return type str

read_raw (size=None)
Read the unmodified string sent from the instrument to the computer.

In contrast to read(), no termination characters are stripped.
Return type bytes

read_stb()
Service request status register.

read_termination
Read termination character.

read_termination_context (*args, **kwds)

read_values (fimt=None, container=<type ‘list’>)
Read a list of floating point values from the device.

Parameters

» fmt — the format of the values. If given, it overrides the class attribute “values_format”.
Possible values are bitwise disjunctions of the above constants ascii, single, double, and
big_endian. Default is ascii.

* container — the output datatype
Returns the list of read values
Return type list
register (interface_type, resource_class)
remote_enabled
VI_ATTR_GPIB_REN_STATE returns the current state of the GPIB REN (Remote ENable) inter-

face line.

VISA Attribute VI_ATTR_GPIB_REN_STATE (1073676673)

96 Chapter 3. More information

http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#list
http://docs.python.org/2/library/functions.html#str
http://docs.python.org/2/library/functions.html#list

PyVISA Documentation, Release 1.6.3

Type :class:pyvisa.constants.LineState

resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourcelInfo
resource_manufacturer name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_NAME (3221159938)

secondary_address
VI_ATTR_GPIB_SECONDARY_ADDR specifies the secondary address of the GPIB device used by
the given session. For the GPIB INTFC Resource, this attribute is Read-Write.
VISA Attribute VI_ATTR_GPIB_SECONDARY_ADDR (1073676659)
Type int
Range 0 <= value <= 30 or in [65535]
send_command (data)
Write GPIB command bytes on the bus.
Corresponds to viGpibCommand function of the VISA library.
Parameters data (byres) — data tor write.
Returns Number of written bytes, return value of the library call.
Return type int, VISAStatus

send_end

3.6.

API 97

PyVISA Documentation, Release 1.6.3

VI_ATTR_SEND_END_EN specifies whether to assert END during the transfer of the last byte of
the buffer.

VISA Attribute VI_ATTR_SEND_END_EN (1073676310)
Type bool

send_ifc ()
Pulse the interface clear line (IFC) for at least 100 microseconds.
Corresponds to viGpibSendIFC function of the VISA library.
Returns return value of the library call.

Return type VISAStatus

session
Resource session handle.

Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_attribute (name, state)
Sets the state of an attribute.

Parameters
¢ name — Attribute for which the state is to be modified. (Attributes.*)
* state — The state of the attribute to be set for the specified object.
spec_version

VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.

VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)
Type int
Range 0 <= value <=4294967295

stb
Service request status register.

timeout

The timeout in milliseconds for all resource I/O operations.

None is mapped to VI_TMO_INFINITE. A value less than 1 is mapped to VI_TMO_IMMEDIATE.

uninstall_handler (event_type, handler, user_handle=None)

Uninstalls handlers for events in this resource.
Parameters
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely in a session for an event.

98

Chapter 3. More information

PyVISA Documentation, Release 1.6.3

unlock ()
Relinquishes a lock for the specified resource.

values_format
visa_attributes_classes = [<class ‘pyvisa.attributes.AttrVI_ATTR_GPIB_PRIMARY_ADDR’>, <class ‘pyvisa.af

wait_for_srq (timeout=25000)
Wait for a serial request (SRQ) coming from the instrument.

Note that this method is not ended when another instrument signals an SRQ, only this instrument.

Parameters timeout — the maximum waiting time in milliseconds. Defaul: 25000 (seconds).
None means waiting forever if necessary.

write (message, termination=None, encoding=None)
Write a string message to the device.

The write_termination is always appended to it.
Parameters message (unicode (Py2) or str (Py3)) — the message to be sent.
Returns number of bytes written.
Return type int

write_ascii_values (message, values, converter=u’f’, separator=u’, ‘, termination=None, encod-
ing=None)
Write a string message to the device followed by values in ascii format.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3)) — the message to be sent.
* values — data to be writen to the device.

* converter (callable | str) — function used to convert each value. String formatting
codes are also accepted. Defaults to str.

* separator — a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

Type separator: (collections.Iterable[T]) -> str | str
Returns number of bytes written.
Return type int

write_binary_ values (message, values, datatype=u’f’, is_big_endian="False, termination=None,
encoding=None)
Write a string message to the device followed by values in binary format.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3)) — the message to be sent.
¢ values — data to be writen to the device.
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess.
Returns number of bytes written.

Return type int

3.6.

API 99

http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int
http://docs.python.org/2/library/functions.html#int

PyVISA Documentation, Release 1.6.3

write_raw (message)
Write a byte message to the device.

Parameters message (byfes) — the message to be sent.
Returns number of bytes written.
Return type int

write_termination
Writer termination character.

write_values (message, values, termination=None, encoding=None)

class pyvisa.resources.GPIBInterface (resource_manager, resource_name)
Communicates with to devices of type GPIB::INTFC

More complex resource names can be specified with the following grammar: GPIB[board]::INTFC
Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().
address_state
This attribute shows whether the specified GPIB interface is currently addressed to talk or listen, or
is not addressed.
VISA Attribute VI_ATTR_GPIB_ADDR_STATE (1073676380)

Type :class:pyvisa.constants.AddressState

allow_dma

This attribute specifies whether I/0 accesses should use DMA (VI_TRUE) or Programmed 1/O
(VI_FALSE). In some implementations, this attribute may have global effects even though it is
documented to be a local attribute. Since this affects performance and not functionality, that behavior
is acceptable.

VISA Attribute VI_ATTR_DMA_ALLOW_EN (1073676318)
Type bool

assert_trigger ()
Sends a software trigger to the device.

atn_state

This attribute shows the current state of the GPIB ATN (ATtentioN) interface line.

VISA Attribute VI_ATTR_GPIB_ATN_STATE (1073676375)
Type :class:pyvisa.constants.LineState
before_close ()
Called just before closing an instrument.

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

100 Chapter 3. More information

http://docs.python.org/2/library/functions.html#int

PyVISA Documentation, Release 1.6.3

control_ atn (mode)
Specifies the state of the ATN line and the local active controller state.

Corresponds to viGpibControlATN function of the VISA library.

Parameters mode — Specifies the state of the ATN line and optionally the local active controller
state. (Constants.GPIB_ATN%*)

Returns return value of the library call.
Return type VISAStatus

control ren (mode)
Controls the state of the GPIB Remote Enable (REN) interface line, and optionally the remote/local state
of the device.

Corresponds to viGpibControlREN function of the VISA library.

Parameters mode — Specifies the state of the REN line and optionally the device remote/local
state. (Constants.GPIB_REN¥*)

Returns return value of the library call.
Return type VISAStatus

get_visa_attribute (name)
Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.
Return type unicode (Py2) or str (Py3), list or other type

group_execute_trigger (*resources)

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.
implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)
Type int
Range 0 <= value <=4294967295
install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.
Parameters

* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

3.6.

API 101

PyVISA Documentation, Release 1.6.3

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

io_protocol

VI_ATTR_IO_PROT specifies which protocol to use. In VXI, you can choose normal word serial or
fast data channel (FDC). In GPIB, you can choose normal or high-speed (HS-488) transfers. In serial,
TCPIP, or USB RAW, you can choose normal transfers or 488.2-defined strings. In USB INSTR, you
can choose normal or vendor-specific transfers.

VISA Attribute VI_ATTR_IO_PROT (1073676316)

Type int
Range 0 <= value <= 65535

is_controller_in_charge

This attribute shows whether the specified GPIB interface is currently CIC (Controller In Charge).

VISA Attribute VI_ATTR_GPIB_CIC_STATE (1073676382)
Type bool

is_system_controller

This attribute shows whether the specified GPIB interface is currently the system controller. In some
implementations, this attribute may be modified only through a configuration utility. On these systems
this attribute is read-only (RO).

VISA Attribute VI_ATTR_GPIB_SYS_CNTRL_STATE (1073676392)
Type bool

last_status
Last status code for this session.

Return type pyvisa.constants.StatusCode

lock (timeout=None, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

102 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)

Type :class:pyvisa.constants.AccessModes

ndac_state

This attribute shows the current state of the GPIB NDAC (Not Data ACcepted) interface line.

VISA Attribute VI_ATTR_GPIB_NDAC_STATE (1073676386)
Type :class:pyvisa.constants.LineState
open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.
Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (inf) — Milliseconds before the open operation times out.

pass_control (primary_address, secondary_address)
Tell the GPIB device at the specified address to become controller in charge (CIC).

Corresponds to viGpibPassControl function of the VISA library.
Parameters

* primary_address — Primary address of the GPIB device to which you want to pass
control.

* secondary_address — Secondary address of the targeted GPIB device. If the tar-
geted device does not have a secondary address, this parameter should contain the value
Constants. NO_SEC_ADDR.

Returns return value of the library call.
Return type VISAStatus
primary_address
VI_ATTR_GPIB_PRIMARY_ADDR specifies the primary address of the GPIB device used by the
given session. For the GPIB INTFC Resource, this attribute is Read-Write.
VISA Attribute VI_ATTR_GPIB_PRIMARY_ADDR (1073676658)
Type int

Range 0 <= value <= 30

register (interface_type, resource_class)

remote_enabled

. API 103

http://docs.python.org/2/library/functions.html#int

PyVISA Documentation, Release 1.6.3

VI_ATTR_GPIB_REN_STATE returns the current state of the GPIB REN (Remote ENable) inter-
face line.
VISA Attribute VI_ATTR_GPIB_REN_STATE (1073676673)

Type :class:pyvisa.constants.LineState

resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourceInfo
resource_manufacturer_ name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_NAME (3221159938)

secondary_address

VI_ATTR_GPIB_SECONDARY_ADDR specifies the secondary address of the GPIB device used by
the given session. For the GPIB INTFC Resource, this attribute is Read-Write.

VISA Attribute VI_ATTR_GPIB_SECONDARY_ADDR (1073676659)

Type int
Range 0 <= value <= 30 or in [65535]
send_command (data)
Write GPIB command bytes on the bus.
Corresponds to viGpibCommand function of the VISA library.

Parameters data (bytes) — data tor write.

104 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

Returns Number of written bytes, return value of the library call.
Return type int, VISAStatus
send_end
VI_ATTR_SEND_END_EN specifies whether to assert END during the transfer of the last byte of
the buffer.
VISA Attribute VI_ATTR_SEND_END_EN (1073676310)
Type bool
send_ifc ()
Pulse the interface clear line (IFC) for at least 100 microseconds.
Corresponds to viGpibSendIFC function of the VISA library.
Returns return value of the library call.
Return type VISAStatus

session
Resource session handle.

Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_attribute (name, state)
Sets the state of an attribute.

Parameters
¢ name — Attribute for which the state is to be modified. (Attributes.*)
* state — The state of the attribute to be set for the specified object.
spec_version

VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.

VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)

Type int
Range 0 <= value <=4294967295
timeout
The timeout in milliseconds for all resource I/O operations.
None is mapped to VI_TMO_INFINITE. A value less than 1 is mapped to VI_TMO_IMMEDIATE.

uninstall_handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

3.6.

API 105

PyVISA Documentation, Release 1.6.3

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely in a session for an event.

unlock ()
Relinquishes a lock for the specified resource.

visa_attributes_classes = [<class ‘pyvisa.attributes.AttrVI_ATTR_GPIB_PRIMARY_ADDR’>, <class ‘pyvisa.af

class pyvisa.resources.FirewireInstrument (resource_manager, resource_name)
Communicates with to devices of type VXI::VXI logical address[::INSTR]

More complex resource names can be specified with the following grammar: VXI[board]::VXI logical ad-
dress[::INSTR]

Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().

before_close ()
Called just before closing an instrument.

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

get_visa_attribute (name)
Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.
Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.
implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)
Type int
Range 0 <= value <= 4294967295
install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.
Parameters

* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle — A value specified by an application that can be used for identifying
handlers uniquely for an event type.

106 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

Returns user handle (a ctypes object)

interface number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

last_status
Last status code for this session.

Return type pyvisa.constants.StatusCode

lock (timeout=None, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)
Type :class:pyvisa.constants.AccessModes
move_in (space, offset, length, width, extended=False)
Moves a block of data to local memory from the specified address space and offset.
Parameters
* space — Specifies the address space. (Constants.*SPACE*)
» offset — Offset (in bytes) of the address or register from which to read.

¢ length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* width — Number of bits to read per element.
* extended - Use 64 bits offset independent of the platform.

move_out (space, offset, length, data, width, extended=False)
Moves a block of data from local memory to the specified address space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)

* offset — Offset (in bytes) of the address or register from which to read.

3.6.

API 107

PyVISA Documentation, Release 1.6.3

¢ length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* data — Data to write to bus.
* width — Number of bits to read per element.
* extended — Use 64 bits offset independent of the platform.

open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.

Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (inf) — Milliseconds before the open operation times out.

read_memory (space, offset, width, extended=False)
Reads in an 8-bit, 16-bit, 32-bit, or 64-bit value from the specified memory space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
e width — Number of bits to read.
* extended - Use 64 bits offset independent of the platform.
Returns Data read from memory.
Corresponds to viln* functions of the visa library.
register (interface_type, resource_class)
resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourcelInfo
resource_manufacturer_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

108 Chapter 3. More information

http://docs.python.org/2/library/functions.html#int

PyVISA Documentation, Release 1.6.3

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.
VISA Attribute VI_ATTR_RSRC_NAME (3221159938)
session
Resource session handle.
Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_attribute (name, state)
Sets the state of an attribute.

Parameters
¢ name — Attribute for which the state is to be modified. (Attributes.*)
» state — The state of the attribute to be set for the specified object.
spec_version

VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.

VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)

Type int
Range 0 <= value <= 4294967295
timeout
The timeout in milliseconds for all resource I/O operations.
None is mapped to VI_TMO_INFINITE. A value less than 1 is mapped to VI_TMO_IMMEDIATE.

uninstall_ handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle — A value specified by an application that can be used for identifying
handlers uniquely in a session for an event.

unlock ()
Relinquishes a lock for the specified resource.

visa_attributes_classes = [<class ‘pyvisa.attributes.AttrVI_ATTR_INTF_NUM’>, <class ‘pyvisa.attributes.Attr

write_memory (space, offset, data, width, extended=False)
Write in an 8-bit, 16-bit, 32-bit, value to the specified memory space and offset.

Parameters

3.6.

API 109

PyVISA Documentation, Release 1.6.3

* space — Specifies the address space. (Constants.*SPACE*)

* offset — Offset (in bytes) of the address or register from which to read.

* data — Data to write to bus.

e width — Number of bits to read.

* extended — Use 64 bits offset independent of the platform.
Corresponds to viOut* functions of the visa library.

class pyvisa.resources.PXIInstrument (resource_manager, resource_name)
Communicates with to devices of type PXI::<device>[::INSTR]

More complex resource names can be specified with the following grammar:
PXI[bus]::device[::function][::INSTR]

or: PXI[interface]::bus-device[.function][::INSTR]

or: PXI[interface]::CHASSISchassis number::SLOTSslot number[::FUNCfunction][::INSTR]

Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().
allow_dma

This attribute specifies whether I/0 accesses should use DMA (VI_TRUE) or Programmed 1/O
(VI_FALSE). In some implementations, this attribute may have global effects even though it is
documented to be a local attribute. Since this affects performance and not functionality, that behavior
is acceptable.

VISA Attribute VI_ATTR_DMA_ALLOW_EN (1073676318)
Type bool

before_close ()
Called just before closing an instrument.

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

destination_increment

VI_ATTR_DEST_INCREMENT is used in the viMoveOutXX() operations to specify by how many
elements the destination offset is to be incremented after every transfer. The default value of this
attribute is 1 (that is, the destination address will be incremented by 1 after each transfer), and the
viMoveOutXX() operations move into consecutive elements. If this attribute is set to 0, the viMove-
OutXX() operations will always write to the same element, essentially treating the destination as a
FIFO register.

VISA Attribute VI_ATTR_DEST_INCREMENT (1073676353)
Type int
Range 0 <= value <=1
get_visa_attribute (name)
Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)

110 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

Returns The state of the queried attribute for a specified resource.
Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.
implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)
Type int
Range 0 <= value <=4294967295
install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.
Parameters
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle — A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface_number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

last_status
Last status code for this session.

Return type pyvisa.constants.StatusCode

lock (timeout=None, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

3.6.

API 111

PyVISA Documentation, Release 1.6.3

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)

Type :class:pyvisa.constants.AccessModes

manufacturer id

VI_ATTR_MANF_ID is the manufacturer identification number of the device.

VISA Attribute VI_ATTR_MANF_ID (1073676505)

Type int
Range 0 <= value <= 65535
manufacturer_ name
This string attribute is the manufacturer name.
VISA Attribute VI_ATTR_MANF_NAME (3221160050)

model_code
VI_ATTR_MODEL_CODE specifies the model code for the device.

VISA Attribute VI_ATTR_MODEL_CODE (1073676511)
Type int
Range 0 <= value <= 65535

model_ name
This string attribute is the model name of the device.

VISA Attribute VI_ATTR_MODEL_NAME (3221160055)

move_in (space, offset, length, width, extended=False)
Moves a block of data to local memory from the specified address space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
» offset — Offset (in bytes) of the address or register from which to read.

¢ length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* width — Number of bits to read per element.
* extended - Use 64 bits offset independent of the platform.

move_out (space, offset, length, data, width, extended=False)
Moves a block of data from local memory to the specified address space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)

» offset — Offset (in bytes) of the address or register from which to read.

112 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

¢ length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* data — Data to write to bus.
* width — Number of bits to read per element.
* extended — Use 64 bits offset independent of the platform.

open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.

Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (inf) — Milliseconds before the open operation times out.

read_memory (space, offset, width, extended=False)
Reads in an 8-bit, 16-bit, 32-bit, or 64-bit value from the specified memory space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
e width — Number of bits to read.
* extended - Use 64 bits offset independent of the platform.
Returns Data read from memory.
Corresponds to viln* functions of the visa library.
register (interface_type, resource_class)
resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourcelInfo
resource_manufacturer_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

3.6.

API 113

http://docs.python.org/2/library/functions.html#int

PyVISA Documentation, Release 1.6.3

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.
VISA Attribute VI_ATTR_RSRC_NAME (3221159938)
session
Resource session handle.
Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_attribute (name, state)
Sets the state of an attribute.

Parameters
¢ name — Attribute for which the state is to be modified. (Attributes.*)
» state — The state of the attribute to be set for the specified object.
source_increment

VI_ATTR_SRC_INCREMENT is used in the viMoveInXX() operations to specify by how many ele-
ments the source offset is to be incremented after every transfer. The default value of this attribute
is 1 (that is, the source address will be incremented by 1 after each transfer), and the viMoveInXX()
operations move from consecutive elements. If this attribute is set to 0, the viMoveInXX() operations
will always read from the same element, essentially treating the source as a FIFO register.

VISA Attribute VI_ATTR_SRC_INCREMENT (1073676352)
Type int

Range 0 <= value <=1

spec_version
VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.
VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)
Type int
Range 0 <= value <= 4294967295
timeout
The timeout in milliseconds for all resource I/O operations.

None is mapped to VI_TMO_INFINITE. A value less than 1 is mapped to VI_TMO_IMMEDIATE.

uninstall_handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters

* event_type — Logical event identifier.

114 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely in a session for an event.

unlock ()
Relinquishes a lock for the specified resource.

visa_attributes_classes = [<class ‘pyvisa.attributes.AttrVI_ATTR_DEST_INCREMENT’>, <class ‘pyvisa.attrib

write_memory (space, offset, data, width, extended=False)
Write in an 8-bit, 16-bit, 32-bit, value to the specified memory space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
» offset — Offset (in bytes) of the address or register from which to read.
* data — Data to write to bus.
* width — Number of bits to read.
* extended - Use 64 bits offset independent of the platform.
Corresponds to viOut* functions of the visa library.

class pyvisa.resources.PXIMemory (resource_manager, resource_name)
Communicates with to devices of type PXI[interface]::MEMACC

Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().

before_ close ()
Called just before closing an instrument.

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

destination_increment

VI_ATTR_DEST_INCREMENT is used in the viMoveOutXX() operations to specify by how many
elements the destination offset is to be incremented after every transfer. The default value of this
attribute is 1 (that is, the destination address will be incremented by 1 after each transfer), and the
viMoveOutXX() operations move into consecutive elements. If this attribute is set to 0, the viMove-
OutXX() operations will always write to the same element, essentially treating the destination as a
FIFO register.

VISA Attribute VI_ATTR_DEST_INCREMENT (1073676353)
Type int

Range 0 <= value <=1
get_visa_attribute (name)
Retrieves the state of an attribute in this resource.
Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.

Return type unicode (Py2) or str (Py3), list or other type

3.6. API 115

PyVISA Documentation, Release 1.6.3

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.
implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)
Type int
Range 0 <= value <= 4294967295
install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.
Parameters
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface_number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

last_status
Last status code for this session.

Return type pyvisa.constants.StatusCode

lock (timeout=None, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

116

Chapter 3. More information

PyVISA Documentation, Release 1.6.3

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)
Type :class:pyvisa.constants.AccessModes
move_in (space, offset, length, width, extended=False)
Moves a block of data to local memory from the specified address space and offset.
Parameters
* space — Specifies the address space. (Constants.*SPACE*)
» offset — Offset (in bytes) of the address or register from which to read.

¢ length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* width — Number of bits to read per element.
* extended - Use 64 bits offset independent of the platform.

move_out (space, offset, length, data, width, extended=False)
Moves a block of data from local memory to the specified address space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

* length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* data — Data to write to bus.
* width — Number of bits to read per element.
* extended — Use 64 bits offset independent of the platform.

open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.

Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (inf) — Milliseconds before the open operation times out.

read_memory (space, offset, width, extended=False)
Reads in an 8-bit, 16-bit, 32-bit, or 64-bit value from the specified memory space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* width — Number of bits to read.
* extended - Use 64 bits offset independent of the platform.

Returns Data read from memory.

3.6.

API 117

http://docs.python.org/2/library/functions.html#int

PyVISA Documentation, Release 1.6.3

Corresponds to viln* functions of the visa library.
register (interface_type, resource_class)
resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourcelInfo
resource_manufacturer_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.
VISA Attribute VI_ATTR_RSRC_NAME (3221159938)
session
Resource session handle.
Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_attribute (name, state)
Sets the state of an attribute.

Parameters
¢ name — Attribute for which the state is to be modified. (Attributes.*)
* state - The state of the attribute to be set for the specified object.
source_increment

VI_ATTR_SRC_INCREMENT is used in the viMoveInXX() operations to specify by how many ele-
ments the source offset is to be incremented after every transfer. The default value of this attribute
is 1 (that is, the source address will be incremented by 1 after each transfer), and the viMoveInXX()
operations move from consecutive elements. If this attribute is set to 0, the viMoveInXX() operations
will always read from the same element, essentially treating the source as a FIFO register.

118 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

VISA Attribute VI_ATTR_SRC_INCREMENT (1073676352)
Type int

Range 0 <= value <=1

spec_version
VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.
VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)
Type int
Range 0 <= value <= 4294967295
timeout
The timeout in milliseconds for all resource I/O operations.

None is mapped to VI_TMO_INFINITE. A value less than 1 is mapped to VI_TMO_IMMEDIATE.

uninstall_handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely in a session for an event.

unlock ()
Relinquishes a lock for the specified resource.

visa_attributes_classes = [<class ‘pyvisa.attributes.AttrVI_ATTR_DEST_INCREMENT’>, <class ‘pyvisa.attrib

write_memory (space, offset, data, width, extended=False)
Write in an 8-bit, 16-bit, 32-bit, value to the specified memory space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* data — Data to write to bus.
* width — Number of bits to read.
* extended - Use 64 bits offset independent of the platform.
Corresponds to viOut* functions of the visa library.

class pyvisa.resources.VXIInstrument (resource_manager, resource_name)
Communicates with to devices of type VXI::VXI logical address[::INSTR]

More complex resource names can be specified with the following grammar: VXI[board]::VXI logical ad-
dress[::INSTR]

3.6. API 119

PyVISA Documentation, Release 1.6.3

Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().
allow_dma

This attribute specifies whether I/0 accesses should use DMA (VI_TRUE) or Programmed 1/O
(VI_FALSE). In some implementations, this attribute may have global effects even though it is
documented to be a local attribute. Since this affects performance and not functionality, that behavior
is acceptable.

VISA Attribute VI_ATTR_DMA_ALLOW_EN (1073676318)
Type bool
before_ close()

Called just before closing an instrument.

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

destination_increment

VI_ATTR_DEST_INCREMENT is used in the viMoveOutXX() operations to specify by how many
elements the destination offset is to be incremented after every transfer. The default value of this
attribute is 1 (that is, the destination address will be incremented by 1 after each transfer), and the
viMoveOutXX() operations move into consecutive elements. If this attribute is set to 0, the viMove-
OutXX() operations will always write to the same element, essentially treating the destination as a
FIFO register.

VISA Attribute VI_ATTR_DEST_INCREMENT (1073676353)
Type int
Range 0 <=value <=1

get_visa_attribute (name)

Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.

Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants - constants identifying the warnings to ignore.
implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)
Type int

120 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

Range 0 <= value <= 4294967295
install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.
Parameters
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

io_protocol

VI_ATTR_IO_PROT specifies which protocol to use. In VXI, you can choose normal word serial or
fast data channel (FDC). In GPIB, you can choose normal or high-speed (HS-488) transfers. In serial,
TCPIP, or USB RAW, you can choose normal transfers or 488.2-defined strings. In USB INSTR, you
can choose normal or vendor-specific transfers.

VISA Attribute VI_ATTR_IO_PROT (1073676316)

Type int
Range 0 <= value <= 65535

is_4882_compliant
VI_ATTR_4882_COMPLIANT specifies whether the device is 488.2 compliant.

VISA Attribute VI_ATTR_4882_COMPLIANT (1073676703)
Type bool
last_status
Last status code for this session.
Return type pyvisa.constants.StatusCode

lock (timeout=None, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

3.6.

API 121

PyVISA Documentation, Release 1.6.3

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)

Type :class:pyvisa.constants.AccessModes

manufacturer_id

VI_ATTR_MANF_ID is the manufacturer identification number of the device.

VISA Attribute VI_ATTR_MANF_ID (1073676505)
Type int
Range 0 <= value <= 65535
manufacturer_ name
This string attribute is the manufacturer name.
VISA Attribute VI_ATTR_MANF_NAME (3221160050)

model_ code
VI_ATTR_MODEL_CODE specifies the model code for the device.

VISA Attribute VI_ATTR_MODEL_CODE (1073676511)
Type int
Range 0 <= value <= 65535

model name
This string attribute is the model name of the device.

VISA Attribute VI_ATTR_MODEL_NAME (3221160055)

open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.

Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (inf) — Milliseconds before the open operation times out.
register (interface_type, resource_class)
resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the

canonical resource name.

VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)

122 Chapter 3. More information

http://docs.python.org/2/library/functions.html#int

PyVISA Documentation, Release 1.6.3

resource_info
Get the extended information of this resource.

Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourceInfo
resource_manufacturer_ name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_NAME (3221159938)

send _end
VI_ATTR_SEND_END_EN specifies whether to assert END during the transfer of the last byte of
the buffer.

VISA Attribute VI_ATTR_SEND_END_EN (1073676310)
Type bool

session
Resource session handle.

Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_ attribute (name, state)
Sets the state of an attribute.

Parameters
¢ name — Attribute for which the state is to be modified. (Attributes.*)
* state — The state of the attribute to be set for the specified object.
source_increment

VI_ATTR_SRC_INCREMENT is used in the viMoveInXX() operations to specify by how many ele-
ments the source offset is to be incremented after every transfer. The default value of this attribute
is 1 (that is, the source address will be incremented by 1 after each transfer), and the viMoveInXX()
operations move from consecutive elements. If this attribute is set to 0, the viMoveInXX() operations
will always read from the same element, essentially treating the source as a FIFO register.

VISA Attribute VI_ATTR_SRC_INCREMENT (1073676352)

3.6. API 123

PyVISA Documentation, Release 1.6.3

Type int

Range 0 <= value <=1

spec_version

VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.

VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)

Type int
Range 0 <= value <= 4294967295
timeout
The timeout in milliseconds for all resource I/O operations.
None is mapped to VI_TMO_INFINITE. A value less than 1 is mapped to VI_TMO_IMMEDIATE.

uninstall_ handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle — A value specified by an application that can be used for identifying
handlers uniquely in a session for an event.

unlock ()
Relinquishes a lock for the specified resource.

visa_attributes_classes = [<class ‘pyvisa.attributes.AttrVI_ATTR_CMDR_LA’>, <class ‘pyvisa.attributes.AttrV

class pyvisa.resources.VXIMemory (resource_manager, resource_name)
Communicates with to devices of type VXI[board]:: MEMACC

More complex resource names can be specified with the following grammar: VXI[board]::MEMACC
Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().
allow_dma

This attribute specifies whether I/0 accesses should use DMA (VI_TRUE) or Programmed 1/O
(VI_FALSE). In some implementations, this attribute may have global effects even though it is
documented to be a local attribute. Since this affects performance and not functionality, that behavior
is acceptable.

VISA Attribute VI_ATTR_DMA_ALLOW_EN (1073676318)
Type bool

before_close ()
Called just before closing an instrument.

124 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

destination_increment

VI_ATTR_DEST_INCREMENT is used in the viMoveOutXX() operations to specify by how many
elements the destination offset is to be incremented after every transfer. The default value of this
attribute is 1 (that is, the destination address will be incremented by 1 after each transfer), and the
viMoveOutXX() operations move into consecutive elements. If this attribute is set to 0, the viMove-
OutXX() operations will always write to the same element, essentially treating the destination as a
FIFO register.

VISA Attribute VI_ATTR_DEST_INCREMENT (1073676353)
Type int
Range 0 <= value <=1

get_visa_attribute (name)

Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.

Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.
implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)
Type int
Range 0 <= value <= 4294967295
install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.
Parameters
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle — A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

3.6.

API 125

PyVISA Documentation, Release 1.6.3

interface_number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

last_status
Last status code for this session.

Return type pyvisa.constants.StatusCode

lock (timeout=None, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)
Type :class:pyvisa.constants.AccessModes
move_in (space, offset, length, width, extended=False)
Moves a block of data to local memory from the specified address space and offset.
Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

* length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* width — Number of bits to read per element.
* extended — Use 64 bits offset independent of the platform.

move_out (space, offset, length, data, width, extended=False)
Moves a block of data from local memory to the specified address space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)

» offset — Offset (in bytes) of the address or register from which to read.

126 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

¢ length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* data — Data to write to bus.
* width — Number of bits to read per element.
* extended — Use 64 bits offset independent of the platform.

open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.

Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (inf) — Milliseconds before the open operation times out.

read_memory (space, offset, width, extended=False)
Reads in an 8-bit, 16-bit, 32-bit, or 64-bit value from the specified memory space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
e width — Number of bits to read.
* extended - Use 64 bits offset independent of the platform.
Returns Data read from memory.
Corresponds to viln* functions of the visa library.
register (interface_type, resource_class)
resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourcelInfo
resource_manufacturer_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

3.6.

API 127

http://docs.python.org/2/library/functions.html#int

PyVISA Documentation, Release 1.6.3

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.
VISA Attribute VI_ATTR_RSRC_NAME (3221159938)
session
Resource session handle.
Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_attribute (name, state)
Sets the state of an attribute.

Parameters
¢ name — Attribute for which the state is to be modified. (Attributes.*)
» state — The state of the attribute to be set for the specified object.
source_increment

VI_ATTR_SRC_INCREMENT is used in the viMoveInXX() operations to specify by how many ele-
ments the source offset is to be incremented after every transfer. The default value of this attribute
is 1 (that is, the source address will be incremented by 1 after each transfer), and the viMoveInXX()
operations move from consecutive elements. If this attribute is set to 0, the viMoveInXX() operations
will always read from the same element, essentially treating the source as a FIFO register.

VISA Attribute VI_ATTR_SRC_INCREMENT (1073676352)
Type int

Range 0 <= value <=1

spec_version
VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.
VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)
Type int
Range 0 <= value <= 4294967295
timeout
The timeout in milliseconds for all resource I/O operations.

None is mapped to VI_TMO_INFINITE. A value less than 1 is mapped to VI_TMO_IMMEDIATE.

uninstall_handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters

* event_type — Logical event identifier.

128 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely in a session for an event.

unlock ()
Relinquishes a lock for the specified resource.

visa_attributes_classes = [<class ‘pyvisa.attributes.AttrVI_ATTR_DEST_INCREMENT’>, <class ‘pyvisa.attrib

write_memory (space, offset, data, width, extended=False)
Write in an 8-bit, 16-bit, 32-bit, value to the specified memory space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
» offset — Offset (in bytes) of the address or register from which to read.
* data — Data to write to bus.
* width — Number of bits to read.
* extended - Use 64 bits offset independent of the platform.
Corresponds to viOut* functions of the visa library.

class pyvisa.resources.VXIBackplane (resource_manager, resource_name)
Communicates with to devices of type VXI::BACKPLANE

More complex resource names can be specified with the following grammar: VXI[board][::VXI logical
address]::BACKPLANE

Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().

before_close ()
Called just before closing an instrument.

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

get_visa_attribute (name)
Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.
Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.
implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

3.6. API 129

PyVISA Documentation, Release 1.6.3

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)
Type int
Range 0 <= value <= 4294967295
install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.
Parameters
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle — A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

last_status
Last status code for this session.

Return type pyvisa.constants.StatusCode

lock (timeout=None, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)
Type :class:pyvisa.constants.AccessModes
open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.

Parameters

130 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (inf) — Milliseconds before the open operation times out.
register (interface_type, resource_class)
resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourcelInfo
resource_manufacturer_ name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_NAME (3221159938)

session
Resource session handle.

Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_ attribute (name, state)
Sets the state of an attribute.

Parameters
* name — Attribute for which the state is to be modified. (Attributes.*)
* state — The state of the attribute to be set for the specified object.
spec_version

VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the

3.6.

API 131

http://docs.python.org/2/library/functions.html#int

PyVISA Documentation, Release 1.6.3

version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.

VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)

Type int
Range 0 <= value <= 4294967295
timeout
The timeout in milliseconds for all resource I/O operations.
None is mapped to VI_TMO_INFINITE. A value less than 1 is mapped to VI_TMO_IMMEDIATE.

uninstall_handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely in a session for an event.

unlock ()
Relinquishes a lock for the specified resource.

visa_attributes_classes = [<class ‘pyvisa.attributes.AttrVI_ATTR_VXI_TRIG_STATUS’>, <class ‘pyvisa.attribt

3.6.4 Constants module

Provides user-friendly naming to values used in different functions.

class pyvisa.constants.AccessModes

exclusive lock = None
Obtains a exclusive lock on the VISA resource.

no_lock = None
Does not obtain any lock on the VISA resource.

shared_1lock = None
Obtains a lock on the VISA resouce which may be shared between multiple VISA sessions.

class pyvisa.constants.StopBits
The number of stop bits that indicate the end of a frame.

class pyvisa.constants.Parity
The parity types to use with every frame transmitted and received on a serial session.

class pyvisa.constants.SerialTermination
The available methods for terminating a serial transfer.

last_bit = None
The transfer occurs with the last bit not set until the last character is sent.

none = None
The transfer terminates when all requested data is transferred or when an error occurs.

132 Chapter 3. More information

PyVISA Documentation, Release 1.6.3

termination_break = None
The write transmits a break after all the characters for the write are sent.

termination_char = None
The transfer terminate by searching for “/” appending the termination character.

class pyvisa.constants.InterfaceType
The hardware interface

asrl = None
Serial devices connected to either an RS-232 or RS-485 controller.

firewire = None
Firewire device.

gpib = None
GPIB Interface.

gpib_vxi = None
GPIB VXI (VME eXtensions for Instrumentation).

pxi = None
PXI device.

rio = None
Rio device.

rsnrp = None
Rohde and Schwarz Device via Passport

tcpip = None
TCPIP device.

usb = None
Universal Serial Bus (USB) hardware bus.

vxi = None
VXI (VME eXtensions for Instrumentation), VME, MXI (Multisystem eXtension Interface).

class pyvisa.constants.AddressState

class pyvisa.constants.IOProtocol

fdc = None
Fast data channel (FDC) protocol for VXI

hs488 = None
High speed 488 transfer for GPIB

protocol4882_strs = None
488 style transfer for serial

usbtmc_vendor = None
Test measurement class vendor specific for USB

class pyvisa.constants.LineState

class pyvisa.constants.StatusCode
Specifies the status codes that NI-VISA driver-level operations can return.

error_abort = None
The operation was aborted.

3.6. API 133

PyVISA Documentation, Release 1.6.3

error_allocation = None
Insufficient system resources to perform necessary memory allocation.

error_attribute_read_only = None
The specified attribute is read-only.

error bus_error = None
Bus error occurred during transfer.

error_closing_failed = None
Unable to deallocate the previously allocated data structures corresponding to this session or object refer-
ence.

error_ connection_ lost = None
The connection for the specified session has been lost.

error_file_access =None
An error occurred while trying to open the specified file. Possible causes include an invalid path or lack of
access rights.

error file i o =None
An error occurred while performing I/O on the specified file.

error_handler_not_installed = None
A handler is not currently installed for the specified event.

error_in_progress = None
Unable to queue the asynchronous operation because there is already an operation in progress.

error_input_protocol_violation =None
Device reported an input protocol error during transfer.

error_interface_number not_configured = None
The interface type is valid but the specified interface number is not configured.

error_interrupt_pending = None
An interrupt is still pending from a previous call.

error_invalid_access_key = None
The access key to the resource associated with this session is invalid.

error_invalid_access_mode = None
Invalid access mode.

error_invalid_address_space = None
Invalid address space specified.

error_invalid_context = None
Specified event context is invalid.

error_invalid_degree = None
Specified degree is invalid.

error_invalid_event = None
Specified event type is not supported by the resource.

error_invalid_expression = None
Invalid expression specified for search.

error_invalid_ format = None
A format specifier in the format string is invalid.

error_invalid handler_ reference = None
The specified handler reference is invalid.

134

Chapter 3. More information

PyVISA Documentation, Release 1.6.3

error_invalid_job_i_d = None
Specified job identifier is invalid.

error_invalid_length = None
Invalid length specified.

error invalid line = None
The value specified by the line parameter is invalid.

error_invalid_lock_type = None
The specified type of lock is not supported by this resource.

error_invalid mask = None
Invalid buffer mask specified.

error_invalid_mechanism = None
Invalid mechanism specified.

error_invalid mode = None
The specified mode is invalid.

error_invalid_object = None
The specified session or object reference is invalid.

error_invalid_ offset = None
Invalid offset specified.

error_invalid_parameter = None
The value of an unknown parameter is invalid.

error_invalid_protocol = None
The protocol specified is invalid.

error_invalid_resource_name = None
Invalid resource reference specified. Parsing error.

error_invalid_setup = None

Unable to start operation because setup is invalid due to inconsistent state of properties.

error_invalid size = None
Invalid size of window specified.

error_invalid width = None
Invalid source or destination width specified.

error_io = None
Could not perform operation because of I/O error.

error_library_not_found = None
A code library required by VISA could not be located or loaded.

error_ line_ in_use = None
The specified trigger line is currently in use.

error_machine_not_available = None
The remote machine does not exist or is not accepting any connections.

error_memory_not_shared = None
The device does not export any memory.

error_no_listeners = None
No listeners condition is detected (both NRFD and NDAC are deasserted).

3.6.

API

135

PyVISA Documentation, Release 1.6.3

error_no_permission = None
Access to the remote machine is denied.

error_nonimplemented operation =None
The specified operation is unimplemented.

error_nonsupported_attribute = None
The specified attribute is not defined or supported by the referenced session, event, or find list.

error_nonsupported_attribute_state = None
The specified state of the attribute is not valid or is not supported as defined by the session, event, or find
list.

error_nonsupported_format = None
A format specifier in the format string is not supported.

error_nonsupported interrupt = None
The interface cannot generate an interrupt on the requested level or with the requested statusID value.

error_nonsupported_line = None
The specified trigger source line (trigSrc) or destination line (trigDest) is not supported by this VISA
implementation, or the combination of lines is not a valid mapping.

error_ nonsupported_mechanism = None
The specified mechanism is not supported for the specified event type.

error_nonsupported_mode = None
The specified mode is not supported by this VISA implementation.

error_nonsupported offset = None
Specified offset is not accessible from this hardware.

error_nonsupported_offset_alignment = None
The specified offset is not properly aligned for the access width of the operation.

error_nonsupported_operation = None
The session or object reference does not support this operation.

error_nonsupported_varying widths = None
Cannot support source and destination widths that are different.

error_nonsupported width = None
Specified width is not supported by this hardware.

error_ not_cic = None
The interface associated with this session is not currently the Controller-in-Charge.

error_not_enabled = None
The session must be enabled for events of the specified type in order to receive them.

error_not_system_controller = None
The interface associated with this session is not the system controller.

error_output_protocol_violation = None
Device reported an output protocol error during transfer.

error_dqueue_error = None
Unable to queue asynchronous operation.

error_queue_overflow = None
The event queue for the specified type has overflowed, usually due to not closing previous events.

error_raw_read_protocol_violation = None
Violation of raw read protocol occurred during transfer.

136

Chapter 3. More information

PyVISA Documentation, Release 1.6.3

error_raw_write_protocol_violation = None
Violation of raw write protocol occurred during transfer.

error_resource_busy = None
The resource is valid, but VISA cannot currently access it.

error_ resource_locked = None
Specified type of lock cannot be obtained or specified operation cannot be performed because the resource
is locked.

error_resource_not_found = None
Insufficient location information, or the device or resource is not present in the system.

error_response_pending = None
A previous response is still pending, causing a multiple query error.

error_serial_framing = None
A framing error occurred during transfer.

error_serial_ overrun = None
An overrun error occurred during transfer. A character was not read from the hardware before the next
character arrived.

error_serial_parity = None
A parity error occurred during transfer.

error_session_not_locked = None
The current session did not have any lock on the resource.

error_srq not_occurred = None
Service request has not been received for the session.

error_system_error = None
Unknown system error.

error_timeout = None
Timeout expired before operation completed.

error_trigger_not_mapped = None
The path from the trigger source line (trigSrc) to the destination line (trigDest) is not currently mapped.

error_user_buffer = None
A specified user buffer is not valid or cannot be accessed for the required size.

error_window_already mapped = None
The specified session currently contains a mapped window.

error_window_not_mapped = None
The specified session is currently unmapped.

success = None
Operation completed successfully.

success_device_not_present = None
Session opened successfully, but the device at the specified address is not responding.

success_event_already_disabled = None
Specified event is already disabled for at least one of the specified mechanisms.

success_event_already_ enabled = None
Specified event is already enabled for at least one of the specified mechanisms.

success_max_count_read = None
The number of bytes read is equal to the input count.

3.6. API 137

PyVISA Documentation, Release 1.6.3

success_nested_exclusive = None
Operation completed successfully, and this session has nested exclusive locks.

success_nested_shared = None
Operation completed successfully, and this session has nested shared locks.

success_no _more_handler calls_in_ chain = None
Event handled successfully. Do not invoke any other handlers on this session for this event.

success_queue_already_empty = None
Operation completed successfully, but the queue was already empty.

success_queue_not_empty = None
Wait terminated successfully on receipt of an event notification. There is still at least one more event
occurrence of the requested type(s) available for this session.

success_syncronous = None
Asynchronous operation request was performed synchronously.

success_termination_character read = None
The specified termination character was read.

success_trigger_already mapped = None
The path from the trigger source line (trigSrc) to the destination line (trigDest) is already mapped.

warning configuration_not_loaded = None
The specified configuration either does not exist or could not be loaded. The VISA-specified defaults are
used.

warning ext_function_not_implemented = None
The operation succeeded, but a lower level driver did not implement the extended functionality.

warning nonsupported_attribute_state = None
Although the specified state of the attribute is valid, it is not supported by this resource implementation.

warning nonsupported_buffer = None
The specified buffer is not supported.

warning null_object = None
The specified object reference is uninitialized.

warning queue_overflow = None
VISA received more event information of the specified type than the configured queue size could hold.

warning unknown_status = None
The status code passed to the operation could not be interpreted.

138 Chapter 3. More information

Python Module Index

P

pyvisa.constants, 132

139

PyVISA Documentation, Release 1.6.3

140 Python Module Index

Index

A

AccessModes (class in pyvisa.constants), 132

address_state (pyvisa.resources.GPIBInterface attribute),
100

AddressState (class in pyvisa.constants), 133

allow_dma (pyvisa.resources.GPIBInstrument attribute),
91

allow_dma (pyvisa.resources.GPIBInterface attribute),
100

allow_dma (pyvisa.resources.PXIInstrument attribute),
110

allow_dma (pyvisa.resources.Seriallnstrument attribute),
55

allow_dma (pyvisa.resources. TCPIPInstrument attribute),
64

allow_dma (pyvisa.resources.VXlInstrument attribute),
120

allow_dma (pyvisa.resources.VXIMemory attribute), 124

allow_transmit (pyvisa.resources.Seriallnstrument
attribute), 55

asrl (pyvisa.constants.InterfaceType attribute), 133

assert_interrupt_signal() (pyvisa.highlevel.VisaLibraryBase before_close()

method), 30

assert_trigger()
method), 30

assert_trigger()
method), 92

assert_trigger()
method), 100

assert_trigger() (pyvisa.resources.Seriallnstrument
method), 55

assert_trigger() (pyvisa.resources. TCPIPInstrument
method), 64

assert_trigger() (pyvisa.resources. TCPIPSocket method),
70

assert_trigger()
method), 76

assert_trigger() (pyvisa.resources.USBRaw method), 84

assert_utility_signal() (pyvisa.highlevel.VisalLibraryBase
method), 30

(pyvisa.highlevel.VisaLibraryBase
(pyvisa.resources.GPIBInstrument

(pyvisa.resources.GPIBInterface

(pyvisa.resources.USBInstrument

atn_state (pyvisa.resources.GPIBInterface attribute), 100

B

baud_rate (pyvisa.resources.Seriallnstrument attribute),
55

before_close() (pyvisa.resources.FirewireInstrument
method), 106

before_close() (pyvisa.resources.GPIBInstrument
method), 92

before_close() (pyvisa.resources.GPIBInterface method),
100

before_close() (pyvisa.resources.PXIInstrument method),
110

before_close() (pyvisa.resources.PXIMemory method),
115

before_close()
method), 55

before_close() (pyvisa.resources. TCPIPInstrument
method), 64

before_close() (pyvisa.resources. TCPIPSocket method),
70

(pyvisa.resources.Seriallnstrument

(pyvisa.resources.USBInstrument
method), 76

before_close() (pyvisa.resources. USBRaw method), 84

before_close() (pyvisa.resources.VXIBackplane method),
129

before_close()
method), 120

before_close() (pyvisa.resources.VXIMemory method),
124

break_length (pyvisa.resources.Seriallnstrument at-
tribute), 55

break_state (pyvisa.resources.Seriallnstrument attribute),
56

buffer_read()
method), 31

buffer_write()
method), 31

bytes_in_buffer (pyvisa.resources.Seriallnstrument at-
tribute), 56

(pyvisa.resources.VXIInstrument

(pyvisa.highlevel.VisaLibraryBase

(pyvisa.highlevel.VisaLibraryBase

141

PyVISA Documentation, Release 1.6.3

C

chunk_size (pyvisa.resources.GPIBInstrument attribute),

92

chunk_size (pyvisa.resources.Seriallnstrument attribute),
56

chunk_size (pyvisa.resources.TCPIPInstrument at-

tribute), 64
chunk_size (pyvisa.resources. TCPIPSocket attribute), 70
chunk_size (pyvisa.resources.USBInstrument attribute),
76
chunk_size (pyvisa.resources.USBRaw attribute), 84
clear() (pyvisa.highlevel.VisaLibraryBase method), 31
clear() (pyvisa.resources.FirewireInstrument method),
106
clear() (pyvisa.resources.GPIBInstrument method), 92
clear() (pyvisa.resources.GPIBInterface method), 100
clear() (pyvisa.resources.PXIInstrument method), 110
clear() (pyvisa.resources.PXIMemory method), 115
clear() (pyvisa.resources.SerialInstrument method), 56
clear() (pyvisa.resources. TCPIPInstrument method), 64
clear() (pyvisa.resources. TCPIPSocket method), 70
clear() (pyvisa.resources.USBInstrument method), 76
clear() (pyvisa.resources.USBRaw method), 84
clear() (pyvisa.resources.VXIBackplane method), 129
clear() (pyvisa.resources.VXIInstrument method), 120
clear() (pyvisa.resources.VXIMemory method), 124
close() (pyvisa.highlevel.ResourceManager method), 53
close() (pyvisa.highlevel.VisaLibraryBase method), 31
close() (pyvisa.resources.Firewirelnstrument method),
106
close() (pyvisa.resources.GPIBInstrument method), 92
close() (pyvisa.resources.GPIBInterface method), 100
close() (pyvisa.resources.PXIInstrument method), 110
close() (pyvisa.resources.PXIMemory method), 115
close() (pyvisa.resources.Seriallnstrument method), 56
close() (pyvisa.resources. TCPIPInstrument method), 64
close() (pyvisa.resources. TCPIPSocket method), 70
close() (pyvisa.resources.USBInstrument method), 76
close() (pyvisa.resources.USBRaw method), 84
close() (pyvisa.resources.VXIBackplane method), 129
close() (pyvisa.resources.V XIInstrument method), 120
close() (pyvisa.resources.VXIMemory method), 125
control_atn() (pyvisa.resources.GPIBInstrument
method), 92
control_atn() (pyvisa.resources.GPIBInterface method),
100
control_in() (pyvisa.resources.USBInstrument method),
76
control_ren()
method), 92
control_ren() (pyvisa.resources.GPIBInterface method),
101
CR (pyvisa.resources.GPIBInstrument attribute), 91
CR (pyvisa.resources.Seriallnstrument attribute), 55

(pyvisa.resources.GPIBInstrument

CR (pyvisa.resources. TCPIPInstrument attribute), 64
CR (pyvisa.resources. TCPIPSocket attribute), 70
CR (pyvisa.resources.USBInstrument attribute), 76
CR (pyvisa.resources.USBRaw attribute), 84

D

data_bits (pyvisa.resources.Seriallnstrument attribute), 56

destination_increment (pyvisa.resources.PXIInstrument
attribute), 110

destination_increment (pyvisa.resources.PXIMemory at-
tribute), 115

destination_increment (pyvisa.resources.V XIInstrument
attribute), 120

destination_increment (pyvisa.resources.VXIMemory at-
tribute), 125

disable_event()
method), 31

discard_events()
method), 32

discard_null (pyvisa.resources.Seriallnstrument at-
tribute), 56

(pyvisa.highlevel.VisaLibraryBase

(pyvisa.highlevel.VisaLibraryBase

E

enable_event()
method), 32

enable_repeat_addressing
(pyvisa.resources.GPIBInstrument
92

enable_unaddressing (pyvisa.resources.GPIBInstrument
attribute), 92

encoding (pyvisa.resources.GPIBInstrument attribute), 93

encoding (pyvisa.resources.Seriallnstrument attribute),
56

encoding (pyvisa.resources. TCPIPInstrument attribute),
64

encoding (pyvisa.resources. TCPIPSocket attribute), 70

encoding (pyvisa.resources.USBInstrument attribute), 77

encoding (pyvisa.resources.USBRaw attribute), 84

end_input (pyvisa.resources.Seriallnstrument attribute),
56

EOI line, 13

error_abort (pyvisa.constants.StatusCode attribute), 133

error_allocation (pyvisa.constants.StatusCode attribute),
133

error_attribute_read_only (pyvisa.constants.StatusCode
attribute), 134

error_bus_error (pyvisa.constants.StatusCode attribute),
134

error_closing_failed
tribute), 134

error_connection_lost (pyvisa.constants.StatusCode at-
tribute), 134

error_file_access (pyvisa.constants.StatusCode attribute),
134

(pyvisa.highlevel.VisaLibraryBase

attribute),

(pyvisa.constants.StatusCode at-

142

Index

PyVISA Documentation, Release 1.6.3

error_file_i_o (pyvisa.constants.StatusCode attribute),
134

error_handler_not_installed
(pyvisa.constants.StatusCode attribute), 134

error_in_progress (pyvisa.constants.StatusCode at-
tribute), 134

error_input_protocol_violation
(pyvisa.constants.StatusCode attribute), 134

error_interface_number_not_configured
(pyvisa.constants.StatusCode attribute), 134

error_interrupt_pending (pyvisa.constants.StatusCode at-
tribute), 134

error_invalid_access_key
attribute), 134

error_invalid_access_mode (pyvisa.constants.StatusCode
attribute), 134

error_invalid_address_space
(pyvisa.constants.StatusCode attribute), 134

error_invalid_context (pyvisa.constants.StatusCode at-
tribute), 134

error_invalid_degree
attribute), 134

error_invalid_event (pyvisa.constants.StatusCode at-
tribute), 134

error_invalid_expression
attribute), 134

error_invalid_format
attribute), 134

error_invalid_handler_reference
(pyvisa.constants.StatusCode attribute), 134

error_invalid_job_i_d (pyvisa.constants.StatusCode at-
tribute), 134

error_invalid_length
attribute), 135

error_invalid_line (pyvisa.constants.StatusCode at-
tribute), 135

error_invalid_lock_type (pyvisa.constants.StatusCode at-
tribute), 135

error_invalid_mask
tribute), 135

error_invalid_mechanism (pyvisa.constants.StatusCode
attribute), 135

error_invalid_mode (pyvisa.constants.StatusCode at-
tribute), 135

error_invalid_object
attribute), 135

error_invalid_offset (pyvisa.constants.StatusCode at-
tribute), 135

error_invalid_parameter (pyvisa.constants.StatusCode at-
tribute), 135

error_invalid_protocol (pyvisa.constants.StatusCode at-
tribute), 135

error_invalid_resource_name
(pyvisa.constants.StatusCode attribute), 135

(pyvisa.constants.StatusCode

(pyvisa.constants.StatusCode

(pyvisa.constants.StatusCode

(pyvisa.constants.StatusCode

(pyvisa.constants.StatusCode

(pyvisa.constants.StatusCode at-

(pyvisa.constants.StatusCode

error_invalid_setup
tribute), 135

error_invalid_size (pyvisa.constants.StatusCode at-
tribute), 135

error_invalid_width
tribute), 135

error_io (pyvisa.constants.StatusCode attribute), 135

error_library_not_found (pyvisa.constants.StatusCode at-
tribute), 135

error_line_in_use (pyvisa.constants.StatusCode at-
tribute), 135

error_machine_not_available
(pyvisa.constants.StatusCode attribute), 135

error_memory_not_shared (pyvisa.constants.StatusCode
attribute), 135

error_no_listeners (pyvisa.constants.StatusCode at-
tribute), 135

error_no_permission
attribute), 135

error_nonimplemented_operation
(pyvisa.constants.StatusCode attribute), 136

error_nonsupported_attribute
(pyvisa.constants.StatusCode attribute), 136

error_nonsupported_attribute_state
(pyvisa.constants.StatusCode attribute), 136

error_nonsupported_format (pyvisa.constants.StatusCode
attribute), 136

error_nonsupported_interrupt
(pyvisa.constants.StatusCode attribute), 136

error_nonsupported_line (pyvisa.constants.StatusCode
attribute), 136

error_nonsupported_mechanism
(pyvisa.constants.StatusCode attribute), 136

error_nonsupported_mode (pyvisa.constants.StatusCode
attribute), 136

error_nonsupported_offset (pyvisa.constants.StatusCode
attribute), 136

error_nonsupported_offset_alignment
(pyvisa.constants.StatusCode attribute), 136

error_nonsupported_operation
(pyvisa.constants.StatusCode attribute), 136

error_nonsupported_varying_widths
(pyvisa.constants.StatusCode attribute), 136

error_nonsupported_width (pyvisa.constants.StatusCode
attribute), 136

error_not_cic (pyvisa.constants.StatusCode attribute),
136

error_not_enabled (pyvisa.constants.StatusCode at-
tribute), 136

error_not_system_controller
(pyvisa.constants.StatusCode attribute), 136

error_output_protocol_violation
(pyvisa.constants.StatusCode attribute), 136

(pyvisa.constants.StatusCode at-

(pyvisa.constants.StatusCode at-

(pyvisa.constants.StatusCode

Index

143

PyVISA Documentation, Release 1.6.3

error_queue_error (pyvisa.constants.StatusCode at-
tribute), 136

error_queue_overflow (pyvisa.constants.StatusCode at-
tribute), 136

error_raw_read_protocol_violation
(pyvisa.constants.StatusCode attribute), 136

error_raw_write_protocol_violation
(pyvisa.constants.StatusCode attribute), 136

error_resource_busy (pyvisa.constants.StatusCode
attribute), 137

error_resource_locked (pyvisa.constants.StatusCode at-
tribute), 137

error_resource_not_found (pyvisa.constants.StatusCode
attribute), 137

error_response_pending (pyvisa.constants.StatusCode at-
tribute), 137

error_serial_framing
attribute), 137

error_serial_overrun
attribute), 137

error_serial_parity (pyvisa.constants.StatusCode at-
tribute), 137

error_session_not_locked (pyvisa.constants.StatusCode
attribute), 137

error_srq_not_occurred (pyvisa.constants.StatusCode at-
tribute), 137

error_system_error
tribute), 137

error_timeout (pyvisa.constants.StatusCode attribute),
137

error_trigger_not_mapped (pyvisa.constants.StatusCode
attribute), 137

error_user_buffer (pyvisa.constants.StatusCode at-
tribute), 137

error_window_already_mapped
(pyvisa.constants.StatusCode attribute), 137

error_window_not_mapped (pyvisa.constants.StatusCode
attribute), 137

exclusive_lock (pyvisa.constants.AccessModes attribute),
132

(pyvisa.constants.StatusCode

(pyvisa.constants.StatusCode

(pyvisa.constants.StatusCode at-

F

fdc (pyvisa.constants.IOProtocol attribute), 133
find_next() (pyvisa.highlevel.VisaLibraryBase method),
32

find_resources()
method), 32
firewire (pyvisa.constants.InterfaceType attribute), 133
FirewireInstrument (class in pyvisa.resources), 106
flush() (pyvisa.highlevel.VisaLibraryBase method), 33
flush() (pyvisa.resources.Seriallnstrument method), 57

(pyvisa.highlevel.VisaLibraryBase

G

get_attribute()
method), 33
get_debug_info() (pyvisa.highlevel.VisaLibraryBase
static method), 33
get_last_status_in_session()
(pyvisa.highlevel.VisaLibraryBase method), 33
get_library_paths() (pyvisa.highlevel.VisaLibraryBase
static method), 33
get_visa_attribute() (pyvisa.resources.Firewirelnstrument
method), 106
get_visa_attribute() (pyvisa.resources.GPIBInstrument
method), 93
get_visa_attribute()
method), 101
get_visa_attribute()
method), 110
get_visa_attribute()
method), 115
get_visa_attribute() (pyvisa.resources.Seriallnstrument
method), 57
get_visa_attribute() (pyvisa.resources. TCPIPInstrument
method), 64
get_visa_attribute()
method), 70
get_visa_attribute()
method), 77
get_visa_attribute() (pyvisa.resources.USBRaw method),
85
get_visa_attribute()
method), 129
get_visa_attribute()
method), 120
get_visa_attribute()
method), 125
gpib (pyvisa.constants.InterfaceType attribute), 133
gpib_command() (pyvisa.highlevel.VisaLibraryBase
method), 33
gpib_control_atn()
method), 33
gpib_control_ren()
method), 34
gpib_pass_control()
method), 34
gpib_send_ifc()
method), 34
gpib_vxi (pyvisa.constants.InterfaceType attribute), 133
GPIBInstrument (class in pyvisa.resources), 91
GPIBInterface (class in pyvisa.resources), 100
group_execute_trigger() (pyvisa.resources.GPIBInterface
method), 101

(pyvisa.highlevel.VisaLibraryBase

(pyvisa.resources.GPIBInterface
(pyvisa.resources.PXIInstrument

(pyvisa.resources.PXIMemory

(pyvisa.resources. TCPIPSocket

(pyvisa.resources.USBInstrument

(pyvisa.resources.VXIBackplane
(pyvisa.resources.VXIInstrument

(pyvisa.resources.VXIMemory

(pyvisa.highlevel.VisaLibraryBase
(pyvisa.highlevel.VisaLibraryBase
(pyvisa.highlevel.VisaLibraryBase

(pyvisa.highlevel.VisaLibraryBase

H

handlers (pyvisa.highlevel.VisaLibraryBase attribute), 34

144

Index

PyVISA Documentation, Release 1.6.3

hs488 (pyvisa.constants.IOProtocol attribute), 133

ignore_warning()
method), 35
ignore_warning() (pyvisa.resources.Firewirelnstrument
method), 106
ignore_warning() (pyvisa.resources.GPIBInstrument
method), 93
ignore_warning()
method), 101
ignore_warning()
method), 111
ignore_warning()
method), 115
ignore_warning() (pyvisa.resources.Seriallnstrument
method), 57
ignore_warning() (pyvisa.resources. TCPIPInstrument
method), 64
ignore_warning()
method), 70
ignore_warning()
method), 77
ignore_warning() (pyvisa.resources.USBRaw method),
85
ignore_warning()
method), 129
ignore_warning()
method), 120
ignore_warning()
method), 125

(pyvisa.highlevel.VisalibraryBase

(pyvisa.resources.GPIBInterface
(pyvisa.resources.PXIInstrument

(pyvisa.resources.PXIMemory

(pyvisa.resources. TCPIPSocket

(pyvisa.resources.USBInstrument

(pyvisa.resources.VXIBackplane
(pyvisa.resources.VXIInstrument

(pyvisa.resources.VXIMemory

implementation_version (pyvisa.resources.FirewireInstrumeHtstall_handler()

attribute), 106

implementation_version (pyvisa.resources.GPIBInstrument install_handler()

attribute), 93

implementation_version (pyvisa.resources.GPIBInterface
attribute), 101

implementation_version (pyvisa.resources.PXIInstrument
attribute), 111

implementation_version (pyvisa.resources.PXIMemory
attribute), 116

implementation_version (pyvisa.resources.Seriallnstrument 1nter face_number

attribute), 57

implementation_version (pyvisa.resources.VXIInstrument
attribute), 120
implementation_version (pyvisa.resources.VXIMemory
attribute), 125
in_16() (pyvisa.highlevel.VisaLibraryBase method), 35
in_32() (pyvisa.highlevel.VisaLibraryBase method), 35
in_64() (pyvisa.highlevel.VisaLibraryBase method), 35
in_8() (pyvisa.highlevel.VisaLibraryBase method), 35
install_handler() (pyvisa.highlevel.VisaLibraryBase
method), 36
install_handler() (pyvisa.resources.FirewireInstrument
method), 106
install_handler() (pyvisa.resources.GPIBInstrument
method), 93
install_handler()
method), 101
install_handler()
method), 111
install_handler() (pyvisa.resources.PXIMemory method),
116
install_handler()
method), 57
install_handler() (pyvisa.resources. TCPIPInstrument
method), 64
install_handler()
method), 71
install_handler()
method), 77
install_handler() (pyvisa.resources.USBRaw method), 85
install_handler() (pyvisa.resources.VXIBackplane
method), 130

(pyvisa.resources.GPIBInterface

(pyvisa.resources.PXIInstrument

(pyvisa.resources.Seriallnstrument

(pyvisa.resources. TCPIPSocket

(pyvisa.resources.USBInstrument

(pyvisa.resources.VXIInstrument

method), 121

(pyvisa.resources.VXIMemory
method), 125

install_visa_handler() (pyvisa.highlevel.VisalibraryBase
method), 36

interface_number (pyvisa.resources.Firewirelnstrument
attribute), 107

interface_number (pyvisa.resources.GPIBInstrument at-
tribute), 93

(pyvisa.resources.GPIBInterface

attribute), 102

implementation_version (pyvisa.resources. TCPIPInstrumendnterface_number (pyvisa.resources.PXIInstrument at-

attribute), 64

implementation_version (pyvisa.resources. TCPIPSocket
attribute), 70

implementation_version (pyvisa.resources.USBInstrument
attribute), 77

implementation_version (pyvisa.resources.USBRaw at-
tribute), 85

implementation_version (pyvisa.resources.VXIBackplane
attribute), 129

tribute), 111

interface_number (pyvisa.resources.PXIMemory
tribute), 116

interface_number (pyvisa.resources.Seriallnstrument at-
tribute), 57

interface_number (pyvisa.resources. TCPIPInstrument at-
tribute), 65

interface_number (pyvisa.resources. TCPIPSocket
tribute), 71

at-

at-

Index

145

PyVISA Documentation, Release 1.6.3

interface_number (pyvisa.resources.USBInstrument at-
tribute), 78

interface_number (pyvisa.resources.USBRaw attribute),
85

interface_number (pyvisa.resources.VXIBackplane at-
tribute), 130

interface_number (pyvisa.resources.VXIInstrument at-
tribute), 121

interface_number (pyvisa.resources.VXIMemory at-
tribute), 125

interface_type (pyvisa.resources.Firewirelnstrument at-
tribute), 107

interface_type (pyvisa.resources.GPIBInstrument at-
tribute), 93

interface_type (pyvisa.resources.GPIBInterface at-
tribute), 102

interface_type (pyvisa.resources.PXIInstrument at-
tribute), 111

interface_type (pyvisa.resources.PXIMemory attribute),
116

interface_type (pyvisa.resources.Seriallnstrument — at-
tribute), 57

interface_type (pyvisa.resources. TCPIPInstrument
attribute), 65

interface_type (pyvisa.resources. TCPIPSocket attribute),
71

interface_type (pyvisa.resources.USBInstrument at-
tribute), 78

interface_type (pyvisa.resources.USBRaw attribute), 85

interface_type (pyvisa.resources.VXIBackplane at-
tribute), 130

interface_type (pyvisa.resources.VXlIInstrument at-
tribute), 121

interface_type (pyvisa.resources.VXIMemory attribute),
126

InterfaceType (class in pyvisa.constants), 133

io_protocol (pyvisa.resources.GPIBInstrument attribute),
93

io_protocol (pyvisa.resources.GPIBInterface attribute),
102

io_protocol (pyvisa.resources.Seriallnstrument attribute),
57

io_protocol (pyvisa.resources. TCPIPSocket attribute), 71

io_protocol (pyvisa.resources.USBInstrument attribute),
78

io_protocol (pyvisa.resources.USBRaw attribute), 85

io_protocol (pyvisa.resources.VXIInstrument attribute),
121

IOProtocol (class in pyvisa.constants), 133

is_4882_compliant (pyvisa.resources.USBInstrument at-
tribute), 78

is_4882_compliant (pyvisa.resources.VXIInstrument at-
tribute), 121

is_controller_in_charge (pyvisa.resources.GPIBInterface
attribute), 102

is_system_controller (pyvisa.resources.GPIBInterface at-
tribute), 102

issue_warning_on (pyvisa.highlevel.VisaLibraryBase at-
tribute), 36

L

last_bit (pyvisa.constants.SerialTermination attribute),
132

last_status (pyvisa.highlevel.ResourceManager attribute),
53

last_status (pyvisa.highlevel.VisaLibraryBase attribute),
36

last_status (pyvisa.resources.FirewireInstrument at-
tribute), 107

last_status (pyvisa.resources.GPIBInstrument attribute),
94

last_status (pyvisa.resources.GPIBInterface attribute),
102

last_status (pyvisa.resources.PXIInstrument
111

last_status (pyvisa.resources.PXIMemory attribute), 116

last_status (pyvisa.resources.Seriallnstrument attribute),
58

last_status (pyvisa.resources. TCPIPInstrument attribute),
65

last_status (pyvisa.resources. TCPIPSocket attribute), 71

last_status (pyvisa.resources.USBInstrument attribute),
78

last_status (pyvisa.resources.USBRaw attribute), 86

last_status (pyvisa.resources.VXIBackplane attribute),
130

last_status (pyvisa.resources.VXIInstrument attribute),
121

last_status (pyvisa.resources.VXIMemory attribute), 126

LF (pyvisa.resources.GPIBInstrument attribute), 91

LF (pyvisa.resources.Seriallnstrument attribute), 55

LF (pyvisa.resources. TCPIPInstrument attribute), 64

LF (pyvisa.resources. TCPIPSocket attribute), 70

LF (pyvisa.resources.USBInstrument attribute), 76

LF (pyvisa.resources.USBRaw attribute), 84

LineState (class in pyvisa.constants), 133

list_resources() (pyvisa.highlevel.ResourceManager
method), 53

list_resources_info() (pyvisa.highlevel.ResourceManager
method), 53

lock() (pyvisa.highlevel.VisaLibraryBase method), 36

lock() (pyvisa.resources.FirewireInstrument method), 107

lock() (pyvisa.resources.GPIBInstrument method), 94

lock() (pyvisa.resources.GPIBInterface method), 102

lock() (pyvisa.resources.PXIInstrument method), 111

lock() (pyvisa.resources.PXIMemory method), 116

lock() (pyvisa.resources.Seriallnstrument method), 58

attribute),

146

Index

PyVISA Documentation, Release 1.6.3

lock() (pyvisa.resources. TCPIPInstrument method), 65

lock() (pyvisa.resources. TCPIPSocket method), 71

lock() (pyvisa.resources.USBInstrument method), 78

lock() (pyvisa.resources.USBRaw method), 86

lock() (pyvisa.resources.VXIBackplane method), 130

lock() (pyvisa.resources.VXIInstrument method), 121

lock() (pyvisa.resources.VXIMemory method), 126

lock_state (pyvisa.resources.Firewirelnstrument at-
tribute), 107

lock_state (pyvisa.resources.GPIBInstrument attribute),

94

lock_state (pyvisa.resources.GPIBInterface attribute),
103

lock_state (pyvisa.resources.PXIInstrument attribute),
112

lock_state (pyvisa.resources.PXIMemory attribute), 116

lock_state (pyvisa.resources.Seriallnstrument attribute),
58

lock_state (pyvisa.resources. TCPIPInstrument attribute),
65

lock_state (pyvisa.resources. TCPIPSocket attribute), 72

lock_state (pyvisa.resources.USBInstrument attribute),
78

lock_state (pyvisa.resources.USBRaw attribute), 86

lock_state (pyvisa.resources.VXIBackplane attribute),
130

lock_state (pyvisa.resources.VXIInstrument attribute),
122

lock_state (pyvisa.resources.VXIMemory attribute), 126

M

manufacturer_id (pyvisa.resources.PXIInstrument at-
tribute), 112
manufacturer_id
attribute), 79
manufacturer_id (pyvisa.resources.USBRaw attribute),
86
manufacturer_id
attribute), 122
manufacturer_name (pyvisa.resources.PXIInstrument at-
tribute), 112
manufacturer_name (pyvisa.resources.USBInstrument at-
tribute), 79
manufacturer_name
tribute), 86
manufacturer_name (pyvisa.resources.VXlIInstrument at-
tribute), 122
map_address()
method), 37
map_trigger()
method), 37
maximum_interrupt_size
(pyvisa.resources.USBInstrument attribute), 79

(pyvisa.resources.USBInstrument

(pyvisa.resources.VXIInstrument

(pyvisa.resources.USBRaw at-

(pyvisa.highlevel.VisaLibraryBase

(pyvisa.highlevel.VisaLibraryBase

maximum_interrupt_size (pyvisa.resources.USBRaw at-
tribute), 86

memory_allocation() (pyvisa.highlevel.VisaLibraryBase
method), 37

memory_free()
method), 38

model_code (pyvisa.resources.PXIInstrument attribute),
112

model_code (pyvisa.resources.USBInstrument attribute),
79

model_code (pyvisa.resources.USBRaw attribute), 86

model_code (pyvisa.resources.VXIInstrument attribute),
122

model_name (pyvisa.resources.PXIInstrument attribute),
112

model_name (pyvisa.resources.USBInstrument attribute),
79

model_name (pyvisa.resources.USBRaw attribute), 87

model_name (pyvisa.resources.VXIInstrument attribute),
122

move() (pyvisa.highlevel.VisaLibraryBase method), 38

move_asynchronously() (pyvisa.highlevel. VisaLibraryBase
method), 38

move_in() (pyvisa.highlevel.VisaLibraryBase method),
39

move_in() (pyvisa.resources.FirewireInstrument
method), 107

move_in() (pyvisa.resources.PXIInstrument method), 112

move_in() (pyvisa.resources.PXIMemory method), 117

move_in() (pyvisa.resources.VXIMemory method), 126

move_in_16() (pyvisa.highlevel.VisaLibraryBase
method), 39

move_in_32()
method), 39

move_in_64()
method), 40

move_in_8() (pyvisa.highlevel.VisaLibraryBase method),
40

move_out() (pyvisa.highlevel.VisaLibraryBase method),
40

move_out() (pyvisa.resources.FirewireInstrument
method), 107

move_out() (pyvisa.resources.PXIInstrument method),
112

move_out() (pyvisa.resources.PXIMemory method), 117

move_out() (pyvisa.resources.VXIMemory method), 126

move_out_16() (pyvisa.highlevel. VisaLibraryBase
method), 41

move_out_32()
method), 41

move_out_64()
method), 42

move_out_8()
method), 42

(pyvisa.highlevel.VisaLibraryBase

(pyvisa.highlevel.VisaLibraryBase

(pyvisa.highlevel.VisaLibraryBase

(pyvisa.highlevel.VisaLibraryBase
(pyvisa.highlevel.VisaLibraryBase

(pyvisa.highlevel.VisaLibraryBase

Index

147

PyVISA Documentation, Release 1.6.3

N

ndac_state (pyvisa.resources.GPIBInterface attribute),
103

no_lock (pyvisa.constants.AccessModes attribute), 132

none (pyvisa.constants.SerialTermination attribute), 132

O

open() (pyvisa.highlevel.VisaLibraryBase method), 42
open() (pyvisa.resources.FirewireInstrument method),
108
open() (pyvisa.resources.GPIBInstrument method), 94
open() (pyvisa.resources.GPIBInterface method), 103
open() (pyvisa.resources.PXIInstrument method), 113
open() (pyvisa.resources.PXIMemory method), 117
open() (pyvisa.resources.Seriallnstrument method), 58
open() (pyvisa.resources. TCPIPInstrument method), 65
open() (pyvisa.resources. TCPIPSocket method), 72
open() (pyvisa.resources.USBInstrument method), 79
open() (pyvisa.resources.USBRaw method), 87
open() (pyvisa.resources.VXIBackplane method), 130
open() (pyvisa.resources.VXIInstrument method), 122
open() (pyvisa.resources.VXIMemory method), 127
open_bare_resource() (pyvisa.highlevel.ResourceManager
method), 53
open_default_resource_manager()
(pyvisa.highlevel.VisaLibraryBase method), 43

poke_16() (pyvisa.highlevel.VisaLibraryBase method),
46

poke_32() (pyvisa.highlevel.VisaLibraryBase method),
46

poke_64() (pyvisa.highlevel.VisaLibraryBase method),
46

poke_8() (pyvisa.highlevel.VisaLibraryBase method), 47

primary_address (pyvisa.resources.GPIBInstrument at-
tribute), 94

primary_address (pyvisa.resources.GPIBInterface at-
tribute), 103
protocol4882_strs (pyvisa.constants.IOProtocol at-

tribute), 133
pxi (pyvisa.constants.InterfaceType attribute), 133
PXIInstrument (class in pyvisa.resources), 110
PXIMemory (class in pyvisa.resources), 115
pyvisa.constants (module), 132

Q

query() (pyvisa.resources.GPIBInstrument method), 95
query() (pyvisa.resources.Seriallnstrument method), 58
query() (pyvisa.resources. TCPIPInstrument method), 65
query() (pyvisa.resources. TCPIPSocket method), 72
query() (pyvisa.resources.USBInstrument method), 79
query() (pyvisa.resources.USBRaw method), 87
query_ascii_values() (pyvisa.resources.GPIBInstrument

open_resource() (pyvisa.highlevel.ResourceManager method), 95
method), 54 query_ascii_values() (pyvisa.resources.Seriallnstrument
out_16() (pyvisa.highlevel.VisaLibraryBase method), 43 r'r'1eth0d), 59 _
out_32() (pyvisa.highlevel.VisaLibraryBase method), 43 query_ascii_values() (pyvisa.resources. TCPIPInstrument
out_64() (pyvisa.highlevel.VisaLibraryBase method), 43 I.I.leth(’d)’ 66 .
out_8() (pyvisa.highlevel. VisaLibraryBase method), 44 ~ dquery_ascii_values() (pyvisa.resources. TCPIPSocket
method), 72
P query_ascii_values() (pyvisa.resources.USBInstrument
Parity (class in pyvisa.constants), 132 @eth;)d), 80 . USBR
parity (pyvisa.resources.Seriallnstrument attribute), 58 query_ascn_\tflell 1235(; 7 (pyvisa.resources. aw
parse_resource() (pyvisa.highlevel.VisaLibraryBase _ metho), .
method), 44 query_binary_values() (pyvisa.resources.GPIBInstrument
parse_resource_extended() . method), 95 . .
(pyvisa.highlevel. VisaLibraryBase method), 44 query_binary_values() (pyvisa.resources.Seriallnstrument
pass_control() (pyvisa.resources.GPIBInstrument . method), 59 .
method), 94 query_binary_values() (pyvisa.resources. TCPIPInstrument
pass_control() (pyvisa.resources.GPIBInterface method), . method), 66 .
103 query_binary_values() (pyvisa.resources. TCPIPSocket
peek() (pyvisa.highlevel.VisaLibraryBase method), 44 . method), 72 .
peek_16() (pyvisa.highlevel. VisaLibraryBase method) query_binary_values() (pyvisa.resources.USBInstrument
- 45 ’ method), 80
peek_32() (pyvisa.highlevel.VisaLibraryBase method), query_binary_values() (pyvisa.resources. USBRaw
45 method), 87
) L . delay, 13
k_64 highlevel. VisaLibraryB thod), duery-ceay.
peek_640 4 ;pyVlS& ighlevel. VisaLibraryBase - method) query_delay (pyvisa.resources.GPIBInstrument at-
peek_8() (pyvisa.highlevel.VisaLibraryBase method), 45 d ltrlbute), 95, Seriallnst ; "
poke() (pyvisa.highlevel.VisaLibraryBase method), 46 query_defay (pyvisa.resources.Seriallnstrumen at
tribute), 59
148 Index

PyVISA Documentation, Release 1.6.3

query_delay (pyvisa.resources. TCPIPInstrument at-
tribute), 66

query_delay (pyvisa.resources. TCPIPSocket attribute),
73

query_delay (pyvisa.resources.USBInstrument attribute),
80

query_delay (pyvisa.resources.USBRaw attribute), 88
query_values() (pyvisa.resources.GPIBInstrument
method), 95
query_values()
method), 59
query_values() (pyvisa.resources. TCPIPInstrument
method), 66
query_values() (pyvisa.resources. TCPIPSocket method),
73
query_values()
method), 80
query_values() (pyvisa.resources.USBRaw method), 88

R

read() (pyvisa.highlevel.VisaLibraryBase method), 47

read() (pyvisa.resources.GPIBInstrument method), 96

read() (pyvisa.resources.Seriallnstrument method), 59

read() (pyvisa.resources. TCPIPInstrument method), 67

read() (pyvisa.resources. TCPIPSocket method), 73

read() (pyvisa.resources.USBInstrument method), 80

read() (pyvisa.resources.USBRaw method), 88

read_asynchronously() (pyvisa.highlevel.VisaLibraryBase
method), 47

read_memory()
method), 47

read_memory() (pyvisa.resources.FirewireInstrument
method), 108

read_memory()
method), 113

read_memory() (pyvisa.resources.PXIMemory method),
117

read_memory() (pyvisa.resources.VXIMemory method),
127

read_raw() (pyvisa.resources.GPIBInstrument method),
96

read_raw() (pyvisa.resources.Seriallnstrument method),
60

read_raw() (pyvisa.resources. TCPIPInstrument method),
67

read_raw() (pyvisa.resources. TCPIPSocket method), 73

read_raw() (pyvisa.resources.USBInstrument method),
81

read_raw() (pyvisa.resources.USBRaw method), 88

read_stb() (pyvisa.highlevel.VisaLibraryBase method),
48

read_stb() (pyvisa.resources.GPIBInstrument method),
96

(pyvisa.resources.Seriallnstrument

(pyvisa.resources.USBInstrument

(pyvisa.highlevel.VisaLibraryBase

(pyvisa.resources.PXIInstrument

read_stb() (pyvisa.resources.Seriallnstrument method),
60

read_stb() (pyvisa.resources. TCPIPInstrument method),
67

read_stb() (pyvisa.resources. TCPIPSocket method), 73

read_stb() (pyvisa.resources.USBInstrument method), 81

read_stb() (pyvisa.resources.USBRaw method), 88

read_termination (pyvisa.resources.GPIBInstrument at-
tribute), 96

read_termination (pyvisa.resources.Seriallnstrument at-
tribute), 60

read_termination (pyvisa.resources. TCPIPInstrument at-
tribute), 67

read_termination (pyvisa.resources. TCPIPSocket
tribute), 73

read_termination (pyvisa.resources.USBInstrument at-
tribute), 81

read_termination (pyvisa.resources.USBRaw attribute),
88

read_termination_context()
(pyvisa.resources.GPIBInstrument method), 96

read_termination_context()
(pyvisa.resources.Seriallnstrument method), 60

read_termination_context()

at-

(pyvisa.resources. TCPIPInstrument method),
67

read_termination_context()
(pyvisa.resources. TCPIPSocket method),
73

read_termination_context()
(pyvisa.resources.USBInstrument method),
81

read_termination_context() (pyvisa.resources.USBRaw
method), 88

read_to_file() (pyvisa.highlevel.VisaLibraryBase
method), 48

read_values() (pyvisa.resources.GPIBInstrument
method), 96

read_values()
method), 60

read_values() (pyvisa.resources. TCPIPInstrument
method), 67

read_values() (pyvisa.resources. TCPIPSocket method),
73

read_values() (pyvisa.resources.USBInstrument method),
81

read_values() (pyvisa.resources. USBRaw method), 88

register() (pyvisa.resources.Firewirelnstrument method),
108

register() (pyvisa.resources.GPIBInstrument method), 96

register() (pyvisa.resources.GPIBInterface method), 103

register() (pyvisa.resources.PXIInstrument method), 113

register() (pyvisa.resources.PXIMemory method), 118

register() (pyvisa.resources.Seriallnstrument method), 60

(pyvisa.resources.Seriallnstrument

Index

149

PyVISA Documentation, Release 1.6.3

register() (pyvisa.resources. TCPIPInstrument method),
67

register() (pyvisa.resources. TCPIPSocket method), 74

register() (pyvisa.resources.USBInstrument method), 81

register() (pyvisa.resources.USBRaw method), 89

register() (pyvisa.resources.VXIBackplane method), 131

register() (pyvisa.resources.VXIInstrument method), 122

register() (pyvisa.resources.VXIMemory method), 127

remote_enabled (pyvisa.resources.GPIBInstrument at-
tribute), 96

remote_enabled (pyvisa.resources.GPIBInterface at-
tribute), 103

replace_char (pyvisa.resources.Seriallnstrument at-
tribute), 60

resource_class (pyvisa.resources.Firewirelnstrument at-
tribute), 108

resource_class (pyvisa.resources.GPIBInstrument at-
tribute), 97

resource_class (pyvisa.resources.GPIBInterface at-
tribute), 104

resource_class (pyvisa.resources.PXIInstrument at-
tribute), 113

resource_class (pyvisa.resources.PXIMemory attribute),
118

resource_class (pyvisa.resources.Seriallnstrument — at-
tribute), 60

resource_class (pyvisa.resources. TCPIPInstrument
attribute), 67

resource_class (pyvisa.resources. TCPIPSocket attribute),
74

resource_class (pyvisa.resources.USBInstrument at-
tribute), 81

resource_class (pyvisa.resources.USBRaw attribute), 89

resource_class (pyvisa.resources.VXIBackplane at-
tribute), 131

resource_class (pyvisa.resources.VXIInstrument at-
tribute), 122

resource_class (pyvisa.resources.VXIMemory attribute),
127

resource_info (pyvisa.resources.Firewirelnstrument at-
tribute), 108

resource_info (pyvisa.resources.GPIBInstrument at-
tribute), 97

resource_info (pyvisa.resources.GPIBInterface attribute),
104

resource_info (pyvisa.resources.PXIInstrument attribute),
113

resource_info (pyvisa.resources.PXIMemory attribute),
118

resource_info (pyvisa.resources.Seriallnstrument at-
tribute), 60

resource_info (pyvisa.resources. TCPIPInstrument at-
tribute), 67

resource_info (pyvisa.resources. TCPIPSocket attribute),
74

resource_info (pyvisa.resources.USBInstrument at-
tribute), 81

resource_info (pyvisa.resources.USBRaw attribute), 89

resource_info (pyvisa.resources.VXIBackplane attribute),
131

resource_info (pyvisa.resources.VXIInstrument at-
tribute), 122

resource_info (pyvisa.resources.VXIMemory attribute),

127
resource_info() (pyvisa.highlevel. ResourceManager
method), 54

resource_manager (pyvisa.highlevel.VisaLibraryBase at-
tribute), 48

resource_manufacturer_name
(pyvisa.resources.FirewireInstrument at-
tribute), 108

resource_manufacturer_name
(pyvisa.resources.GPIBInstrument
97

resource_manufacturer_name
(pyvisa.resources.GPIBInterface
104

resource_manufacturer_name
(pyvisa.resources.PXIInstrument
113

resource_manufacturer_name
(pyvisa.resources.PXIMemory
118

resource_manufacturer_name
(pyvisa.resources.Seriallnstrument
61

resource_manufacturer_name
(pyvisa.resources. TCPIPInstrument
67

resource_manufacturer_name
(pyvisa.resources. TCPIPSocket
74

resource_manufacturer_name
(pyvisa.resources.USBInstrument attribute), 81

resource_manufacturer_name
(pyvisa.resources.USBRaw attribute), 89

resource_manufacturer_name

attribute),

attribute),

attribute),

attribute),

attribute),

attribute),

attribute),

(pyvisa.resources.VXIBackplane attribute),
131

resource_manufacturer_name
(pyvisa.resources.VXIInstrument attribute),
123

resource_manufacturer_name
(pyvisa.resources.VXIMemory attribute),

127
resource_name (pyvisa.resources.FirewireInstrument at-
tribute), 108

150

Index

PyVISA Documentation, Release 1.6.3

resource_name
attribute), 97

resource_name (pyvisa.resources.GPIBInterface at-
tribute), 104

resource_name (pyvisa.resources.PXIInstrument at-
tribute), 113

resource_name (pyvisa.resources.PXIMemory attribute),
118

resource_name
attribute), 61

resource_name (pyvisa.resources. TCPIPInstrument at-
tribute), 68

resource_name (pyvisa.resources. TCPIPSocket attribute),
74

resource_name (pyvisa.resources.USBInstrument at-
tribute), 81

resource_name (pyvisa.resources.USBRaw attribute), 89

resource_name (pyvisa.resources.VXIBackplane at-
tribute), 131

resource_name (pyvisa.resources.VXIInstrument at-
tribute), 123

resource_name (pyvisa.resources.VXIMemory attribute),
127

Resourcelnfo (class in pyvisa.highlevel), 53

ResourceManager (class in pyvisa.highlevel), 53

rio (pyvisa.constants.InterfaceType attribute), 133

rsnrp (pyvisa.constants.InterfaceType attribute), 133

S

secondary_address (pyvisa.resources.GPIBInstrument at-
tribute), 97

secondary_address (pyvisa.resources.GPIBInterface at-
tribute), 104

send_command()

(pyvisa.resources.GPIBInstrument

(pyvisa.resources.SerialIlnstrument

(pyvisa.resources.GPIBInstrument

method), 97

send_command() (pyvisa.resources.GPIBInterface
method), 104

send_end, 13

send_end (pyvisa.resources.GPIBInstrument attribute),
97

send_end (pyvisa.resources. GPIBInterface attribute), 105

send_end (pyvisa.resources.Seriallnstrument attribute),
61

send_end (pyvisa.resources. TCPIPInstrument attribute),
68

send_end (pyvisa.resources.USBInstrument attribute), 82

send_end (pyvisa.resources.VXIInstrument attribute),
123

send_ifc() (pyvisa.resources.GPIBInstrument method),
98

send_ifc() (pyvisa.resources.GPIBInterface method), 105

serial_number (pyvisa.resources.USBInstrument at-
tribute), 82

serial_number (pyvisa.resources.USBRaw attribute), 89

Seriallnstrument (class in pyvisa.resources), 55
SerialTermination (class in pyvisa.constants), 132
session (pyvisa.highlevel.ResourceManager attribute), 54
session (pyvisa.resources.Firewirelnstrument attribute),
109
session (pyvisa.resources.GPIBInstrument attribute), 98
session (pyvisa.resources.GPIBInterface attribute), 105
session (pyvisa.resources.PXIInstrument attribute), 114
session (pyvisa.resources.PXIMemory attribute), 118
session (pyvisa.resources.Seriallnstrument attribute), 61
session (pyvisa.resources. TCPIPInstrument attribute), 68
session (pyvisa.resources. TCPIPSocket attribute), 74
session (pyvisa.resources.USBInstrument attribute), 82
session (pyvisa.resources.USBRaw attribute), 89
session (pyvisa.resources.VXIBackplane attribute), 131
session (pyvisa.resources.VXIInstrument attribute), 123
session (pyvisa.resources.VXIMemory attribute), 128
set_attribute() (pyvisa.highlevel.VisaLibraryBase
method), 48
set_buffer() (pyvisa.highlevel.VisaLibraryBase method),
48
set_visa_attribute() (pyvisa.resources.Firewirelnstrument
method), 109
set_visa_attribute() (pyvisa.resources.GPIBInstrument

method), 98
set_visa_attribute() (pyvisa.resources.GPIBInterface
method), 105

set_visa_attribute()
method), 114

set_visa_attribute()
method), 118

set_visa_attribute() (pyvisa.resources.Seriallnstrument

(pyvisa.resources.PXIInstrument

(pyvisa.resources.PXIMemory

method), 61

set_visa_attribute() (pyvisa.resources. TCPIPInstrument
method), 68

set_visa_attribute() (pyvisa.resources. TCPIPSocket
method), 74

set_visa_attribute() (pyvisa.resources.USBInstrument
method), 82

set_visa_attribute() (pyvisa.resources.USBRaw method),
89

set_visa_attribute() (pyvisa.resources.VXIBackplane
method), 131

set_visa_attribute()
method), 123

set_visa_attribute()
method), 128

shared_lock (pyvisa.constants.AccessModes attribute),
132

source_increment (pyvisa.resources.PXIInstrument at-
tribute), 114

source_increment (pyvisa.resources.PXIMemory at-
tribute), 118

(pyvisa.resources.VXIInstrument

(pyvisa.resources.VXIMemory

Index

151

PyVISA Documentation, Release 1.6.3

source_increment (pyvisa.resources.VXIInstrument at-
tribute), 123

source_increment (pyvisa.resources.VXIMemory at-
tribute), 128

spec_version (pyvisa.resources.FirewireInstrument
attribute), 109

spec_version (pyvisa.resources.GPIBInstrument at-
tribute), 98

spec_version (pyvisa.resources.GPIBlInterface attribute),
105

spec_version (pyvisa.resources.PXIInstrument attribute),
114

spec_version (pyvisa.resources.PXIMemory attribute),
119

spec_version (pyvisa.resources.Seriallnstrument at-
tribute), 61

spec_version (pyvisa.resources. TCPIPInstrument at-
tribute), 68

spec_version (pyvisa.resources.TCPIPSocket attribute),
74

spec_version (pyvisa.resources.USBInstrument attribute),
82

spec_version (pyvisa.resources.USBRaw attribute), 89

spec_version (pyvisa.resources.VXIBackplane attribute),
131

spec_version (pyvisa.resources.VXIInstrument attribute),
124

spec_version (pyvisa.resources.VXIMemory attribute),
128

status_description()
method), 48

StatusCode (class in pyvisa.constants), 133

stb (pyvisa.resources.GPIBInstrument attribute), 98

stb (pyvisa.resources.Seriallnstrument attribute), 61

stb (pyvisa.resources. TCPIPInstrument attribute), 68

stb (pyvisa.resources. TCPIPSocket attribute), 75

stb (pyvisa.resources.USBInstrument attribute), 82

stb (pyvisa.resources.USBRaw attribute), 90

stop_bits (pyvisa.resources.Seriallnstrument attribute), 62

StopBits (class in pyvisa.constants), 132

success (pyvisa.constants.StatusCode attribute), 137

success_device_not_present
(pyvisa.constants.StatusCode attribute), 137

success_event_already_disabled
(pyvisa.constants.StatusCode attribute), 137

success_event_already_enabled
(pyvisa.constants.StatusCode attribute), 137

success_max_count_read (pyvisa.constants.StatusCode
attribute), 137

success_nested_exclusive
attribute), 137

success_nested_shared (pyvisa.constants.StatusCode at-
tribute), 138

(pyvisa.highlevel.VisaLibraryBase

(pyvisa.constants.StatusCode

success_no_more_handler_calls_in_chain
(pyvisa.constants.StatusCode attribute), 138

success_queue_already_empty
(pyvisa.constants.StatusCode attribute), 138

success_queue_not_empty (pyvisa.constants.StatusCode
attribute), 138

success_syncronous (pyvisa.constants.StatusCode at-
tribute), 138

success_termination_character_read
(pyvisa.constants.StatusCode attribute), 138

success_trigger_already_mapped
(pyvisa.constants.StatusCode attribute), 138

T

tepip (pyvisa.constants.InterfaceType attribute), 133

TCPIPInstrument (class in pyvisa.resources), 63

TCPIPSocket (class in pyvisa.resources), 70

terminate() (pyvisa.highlevel.VisaLibraryBase method),
49

termination_break (pyvisa.constants.Serial Termination
attribute), 132

termination_char (pyvisa.constants.Serial Termination at-
tribute), 133

timeout (pyvisa.resources.Firewirelnstrument attribute),
109

timeout (pyvisa.resources.GPIBInstrument attribute), 98

timeout (pyvisa.resources.GPIBInterface attribute), 105

timeout (pyvisa.resources.PXIInstrument attribute), 114

timeout (pyvisa.resources.PXIMemory attribute), 119

timeout (pyvisa.resources.Seriallnstrument attribute), 62

timeout (pyvisa.resources. TCPIPInstrument attribute), 68

timeout (pyvisa.resources. TCPIPSocket attribute), 75

timeout (pyvisa.resources.USBInstrument attribute), 82

timeout (pyvisa.resources.USBRaw attribute), 90

timeout (pyvisa.resources.VXIBackplane attribute), 132

timeout (pyvisa.resources.VXIInstrument attribute), 124

timeout (pyvisa.resources.VXIMemory attribute), 128

U

uninstall_handler()
method), 49
uninstall_handler() (pyvisa.resources.Firewirelnstrument
method), 109
uninstall_handler() (pyvisa.resources.GPIBInstrument
method), 98
uninstall_handler()
method), 105
uninstall_handler()
method), 114
uninstall_handler()
method), 119
uninstall_handler() (pyvisa.resources.Seriallnstrument
method), 62

(pyvisa.highlevel.VisaLibraryBase

(pyvisa.resources.GPIBInterface
(pyvisa.resources.PXIInstrument

(pyvisa.resources.PXIMemory

152

Index

PyVISA Documentation, Release 1.6.3

uninstall_handler() (pyvisa.resources. TCPIPInstrument
method), 69
uninstall_handler()
method), 75
uninstall_handler()
method), 82
uninstall_handler() (pyvisa.resources. USBRaw method),
90
uninstall_handler()
method), 132
uninstall_handler()
method), 124
uninstall_handler()
method), 128

(pyvisa.resources. TCPIPSocket

(pyvisa.resources.USBInstrument

(pyvisa.resources.VXIBackplane
(pyvisa.resources. VXIInstrument

(pyvisa.resources.VXIMemory

uninstall_visa_handler() (pyvisa.highlevel.VisaLibraryBase

method), 49
unlock() (pyvisa.highlevel.VisaLibraryBase method), 50
unlock() (pyvisa.resources.FirewireInstrument method),
109
unlock() (pyvisa.resources.GPIBInstrument method), 98
unlock() (pyvisa.resources.GPIBInterface method), 106
unlock() (pyvisa.resources.PXIInstrument method), 115
unlock() (pyvisa.resources.PXIMemory method), 119
unlock() (pyvisa.resources.Seriallnstrument method), 62
unlock() (pyvisa.resources. TCPIPInstrument method), 69
unlock() (pyvisa.resources. TCPIPSocket method), 75
unlock() (pyvisa.resources.USBInstrument method), 83
unlock() (pyvisa.resources.USBRaw method), 90
unlock() (pyvisa.resources.VXIBackplane method), 132
unlock() (pyvisa.resources.VXIInstrument method), 124
unlock() (pyvisa.resources.VXIMemory method), 129
unmap_address() (pyvisa.highlevel.VisaLibraryBase
method), 50
unmap_trigger()
method), 50
usb (pyvisa.constants.InterfaceType attribute), 133
usb_control_in() (pyvisa.highlevel.VisaLibraryBase
method), 50
usb_control_out()
method), 51
usb_control_out()
method), 83
usb_protocol (pyvisa.resources.USBInstrument attribute),
83
usb_protocol (pyvisa.resources.USBRaw attribute), 90
USBInstrument (class in pyvisa.resources), 76
USBRaw (class in pyvisa.resources), 84
usbtmc_vendor (pyvisa.constants.IOProtocol attribute),
133

(pyvisa.highlevel.VisalibraryBase

(pyvisa.highlevel.VisaLibraryBase

(pyvisa.resources.USBInstrument

V

values_format (pyvisa.resources.GPIBInstrument at-
tribute), 99

values_format (pyvisa.resources.Seriallnstrument — at-
tribute), 62

values_format (pyvisa.resources. TCPIPInstrument
attribute), 69

values_format (pyvisa.resources. TCPIPSocket attribute),
75

values_format (pyvisa.resources.USBInstrument at-
tribute), 83

values_format (pyvisa.resources.USBRaw attribute), 90

visa_attributes_classes (pyvisa.resources.FirewireInstrument
attribute), 109

visa_attributes_classes (pyvisa.resources.GPIBInstrument
attribute), 99

visa_attributes_classes
attribute), 106

visa_attributes_classes (pyvisa.resources.PXIInstrument
attribute), 115

visa_attributes_classes (pyvisa.resources.PXIMemory at-
tribute), 119

visa_attributes_classes (pyvisa.resources.Seriallnstrument
attribute), 62

visa_attributes_classes (pyvisa.resources. TCPIPInstrument
attribute), 69

visa_attributes_classes
attribute), 75

visa_attributes_classes (pyvisa.resources.USBInstrument
attribute), 83

visa_attributes_classes
attribute), 90

visa_attributes_classes (pyvisa.resources.VXIBackplane
attribute), 132

visa_attributes_classes (pyvisa.resources.VXIInstrument
attribute), 124

visa_attributes_classes (pyvisa.resources.VXIMemory at-
tribute), 129

VisaLibraryBase (class in pyvisa.highlevel), 30

vxi (pyvisa.constants.InterfaceType attribute), 133

vxi_command_query() (pyvisa.highlevel.VisaLibraryBase
method), 51

VXIBackplane (class in pyvisa.resources), 129

VXlInstrument (class in pyvisa.resources), 119

VXIMemory (class in pyvisa.resources), 124

W

wait_for_srq()
method), 99
wait_on_event()
method), 51
warning_configuration_not_loaded
(pyvisa.constants.StatusCode attribute), 138
warning_ext_function_not_implemented
(pyvisa.constants.StatusCode attribute), 138
warning_nonsupported_attribute_state
(pyvisa.constants.StatusCode attribute), 138

(pyvisa.resources.GPIBInterface

(pyvisa.resources. TCPIPSocket

(pyvisa.resources.USBRaw

(pyvisa.resources.GPIBInstrument

(pyvisa.highlevel.VisaLibraryBase

Index

153

PyVISA Documentation, Release 1.6.3

warning_nonsupported_buffer
(pyvisa.constants.StatusCode attribute), 138
warning_null_object (pyvisa.constants.StatusCode
attribute), 138
warning_queue_overflow
attribute), 138
warning_unknown_status
attribute), 138
write() (pyvisa.highlevel.VisaLibraryBase method), 52
write() (pyvisa.resources.GPIBInstrument method), 99
write() (pyvisa.resources.Seriallnstrument method), 62
write() (pyvisa.resources. TCPIPInstrument method), 69
write() (pyvisa.resources. TCPIPSocket method), 75
write() (pyvisa.resources.USBInstrument method), 83
write() (pyvisa.resources.USBRaw method), 90
write_ascii_values() (pyvisa.resources.GPIBInstrument

(pyvisa.constants.StatusCode

(pyvisa.constants.StatusCode

method), 99

write_ascii_values() (pyvisa.resources.Seriallnstrument
method), 62

write_ascii_values() (pyvisa.resources. TCPIPInstrument
method), 69

write_ascii_values() (pyvisa.resources. TCPIPSocket
method), 75

write_ascii_values() (pyvisa.resources.USBInstrument
method), 83

write_ascii_values() (pyvisa.resources.USBRaw
method), 90

write_asynchronously() (pyvisa.highlevel.VisaLibraryBase
method), 52

write_binary_values() (pyvisa.resources.GPIBInstrument
method), 99

write_binary_values() (pyvisa.resources.Seriallnstrument
method), 63

write_binary_values() (pyvisa.resources. TCPIPInstrument
method), 69

write_binary_values() (pyvisa.resources. TCPIPSocket
method), 76

write_binary_values() (pyvisa.resources.USBInstrument
method), 84

write_binary_values() (pyvisa.resources.USBRaw
method), 91

write_from_file() (pyvisa.highlevel.VisaLibraryBase
method), 52

write_memory() (pyvisa.highlevel.VisaLibraryBase

method), 52
write_memory() (pyvisa.resources.FirewireInstrument
method), 109
write_memory()
method), 115
write_memory() (pyvisa.resources.PXIMemory method),
119
write_memory() (pyvisa.resources.VXIMemory method),
129

(pyvisa.resources.PXIInstrument

write_raw() (pyvisa.resources.GPIBInstrument method),
99

write_raw() (pyvisa.resources.Seriallnstrument method),
63

write_raw() (pyvisa.resources. TCPIPInstrument method),
70

write_raw() (pyvisa.resources. TCPIPSocket method), 76

write_raw() (pyvisa.resources.USBInstrument method),
84

write_raw() (pyvisa.resources.USBRaw method), 91

write_termination (pyvisa.resources.GPIBInstrument at-
tribute), 100

write_termination (pyvisa.resources.Seriallnstrument at-
tribute), 63

write_termination (pyvisa.resources. TCPIPInstrument at-
tribute), 70

write_termination (pyvisa.resources. TCPIPSocket
tribute), 76

write_termination (pyvisa.resources.USBInstrument at-
tribute), 84

write_termination (pyvisa.resources.USBRaw attribute),
91

write_values() (pyvisa.resources.GPIBInstrument
method), 100

write_values() (pyvisa.resources.Seriallnstrument
method), 63

write_values() (pyvisa.resources. TCPIPInstrument
method), 70

write_values() (pyvisa.resources. TCPIPSocket method),
76

write_values()
method), 84

write_values() (pyvisa.resources.USBRaw method), 91

at-

(pyvisa.resources.USBInstrument

xoff_char (pyvisa.resources.Seriallnstrument attribute),
63

xon_char (pyvisa.resources.Seriallnstrument attribute),
63

154

Index

	General overview
	User guide
	Installation
	Configuring the NI backend
	Tutorial
	Reading and Writing values
	A more complex example
	Resources
	A frontend for multiple backends
	PyVISA Shell
	Architecture

	More information
	VISA resource names
	Migrating from PyVISA < 1.5
	Contributing to PyVISA
	Frequently asked questions
	NI-VISA Installation
	API

	Python Module Index

