

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	PyVISA 1.5 documentation

PyVISA: Python wrapper for the VISA library

[image: PyVISA]

Warning

This documentation corresponds to PyVISA 1.5. If you are still
using the old version, please update using following command:

pip install -U pyvisa

Just in case you need them, the old docs are
here: http://pyvisa.readthedocs.org/en/1.4/

The PyVISA package enables you to control all kinds of measurement equipment
through various busses (GPIB, RS232, USB) with Python programs. As an example,
reading self-identification from a Keithley Multimeter with GPIB number 12 is
as easy as three lines of Python code:

>>> import visa
>>> rm = visa.ResourceManager()
>>> rm.list_resources()
['ASRL1', 'ASRL2', 'GPIB::12']
>>> keithley = rm.get_instrument("GPIB::12")
>>> print(keithley.ask("*IDN?"))

(That’s the whole program; really!) It works on Windows, Linux and Mac;
with arbitrary adapters (e.g. National Instruments, Agilent, Tektronix,
Stanford Research Systems). In order to achieve this, PyVISA relies on
an external library file which is bundled with hardware and software
of those vendors.

General overview

The programming of measurement instruments can be real pain. There are many
different protocols, sent over many different interfaces and bus systems (GPIB,
RS232, USB). For every programming language you want to use, you have to find
libraries that support both your device and its bus system.

In order to ease this unfortunate situation, the VISA (Virtual Instrument
Software Architecture specification was defined in the middle of the 90ies.
Today VISA is implemented on all significant operating systems. A couple
of vendors offer VISA libraries, partly with free download. These libraries
work together with arbitrary peripherical devices, although they may be
limited to certain interface devices, such as the vendor’s GPIB card.

The VISA specification has explicit bindings to Visual Basic, C, and G
(LabVIEW’s graphical language). However, you can use VISA with any language
capable of calling functions in a shared library (.dll, .so, .dylib).
PyVISA is Python wrapper for such shared library.

User guide

	Installation

	Tutorial

	Configuring PyVISA

	Advanced

	Instruments

	Architecture

More information

	Migrating from PyVISA < 1.5

	Contributing to PyVISA

	Frequently asked questions

	API

Legacy Modules

	About the legacy visa module

	About the legacy vpp43 module

	Legacy API

 Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyVISA 1.5 documentation

Installation

PyVISA is a wrapper around the National Instruments’s VISA library, which you need to download and install in order to use PyVISA (NI-VISA Installation).

PyVISA has no additional dependencies except Python [http://www.python.org/] itself. In runs on Python 2.6+ and 3.2+.

Warning

PyVISA works with 32- and 64- bit Python and can deal with 32- and 64-bit VISA libraries without any extra configuration. What PyVISA cannot do is open a 32-bit VISA library while running in 64-bit Python (or the other way around).

You need to make sure that the Python and VISA library have the same bitness

You can install it using pip [http://www.pip-installer.org/]:

$ pip install pyvisa

or using easy_install [http://pypi.python.org/pypi/setuptools]:

$ easy_install pyvisa

That’s all! You can check that PyVISA is correctly installed by starting up python, and importing PyVISA:

>>> import visa
>>> lib = visa.VisaLibrary()

If you encounter any problem, take a look at the Frequently asked questions.

Getting the code

You can also get the code from PyPI [https://pypi.python.org/pypi/PyVISA] or GitHub [https://github.com/hgrecco/pyvisa]. You can either clone the public repository:

$ git clone git://github.com/hgrecco/pyvisa.git

Download the tarball:

$ curl -OL https://github.com/hgrecco/pyvisa/tarball/master

Or, download the zipball:

$ curl -OL https://github.com/hgrecco/pyvisa/zipball/master

Once you have a copy of the source, you can embed it in your Python package, or install it into your site-packages easily:

$ python setup.py install

Note

If you have an old system installation of Python and you don’t want to
mess with it, you can try Anaconda CE [https://store.continuum.io/cshop/anaconda]. It is a free Python distribution by
Continuum Analytics that includes many scientific packages.

 Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyVISA 1.5 documentation

Tutorial

Note

If you have been using PyVISA before version 1.5, you might want to
read Migrating from PyVISA < 1.5.

An example

Let’s go in medias res and have a look at a simple example:

>>> import visa
>>> rm = visa.ResourceManager()
>>> my_instrument = rm.get_instrument('GPIB::14')
>>> my_instrument.write("*IDN?")
>>> print(my_instrument.read())

This example already shows the two main design goals of PyVISA: preferring
simplicity over generality, and doing it the object-oriented way.

Afer importing visa, we create a ResourceManager object. If called without
arguments, PyVISA will try to find the VISA shared for you. You can check, the
location of the shared library used simply by:

>>> print(rm)
<ResourceManager('/path/to/visa.so')>

Note

In some cases, PyVISA is not able to find the library for you
resulting in an OSError. To fix it, find the library path
yourself and pass it to the ResourceManager constructor.
You can also specify it in a configuration file as discussed
in Configuring PyVISA.

Once that you havea ResourceManager, you can access any instrument.
Every instrument is represented in the source by an object instance.
In this case, I have a GPIB instrument with instrument number 14, so I
create the instance (i.e. variable) called my_instrument
accordingly with “GPIB::14” is the instrument’s resource name.
Notice that eventhough you have requeste an instrument, due to the
resource name, get_instrument has given you an instance of GpibInstrument
class (a subclass of the more generic instrument).

>>> print(my_instrument)
<GpibInstrument('GPIB::14')>

See section VISA resource names for a short explanation of that.
Then, I send the message “*IDN?” to the device, which is the standard GPIB
message for “what are you?” or – in some cases – “what’s on your
display at the moment?”.

Listing connected instruments

The resource manager object allows you to list available resources:

>>> rm.list_resources()
['ASRL1', 'ASRL2']

or the most comprehensive list_resources_info which return a dict mapping
resource name to a namedtuple containing information such as the interface type
and the resource class.

Example for serial (RS232) device

There is no only RS232 device in my lab is an old Oxford ITC4 temperature
controller, which is connected through COM2 with my computer. The
following code prints its self-identification on the screen:

itc4 = rm.get_instrument("COM2")
itc4.write("V")
print(itc4.read())

Instead of separate write and read operations, you can do both with
one ask() call. Thus, the above source code is equivalent to:

from visa import *

itc4 = instrument("COM2")
print(itc4.ask("V"))

It couldn’t be simpler. See section Serial devices for
further information about serial devices.

A more complex example

The following example shows how to use SCPI commands with a Keithley
2000 multimeter in order to measure 10 voltages. After having read
them, the program calculates the average voltage and prints it on the
screen.

I’ll explain the program step-by-step. First, we have to initialise
the instrument:

>>> keithley = rm.get_instrument("GPIB::12")
>>> keithley.write("*rst; status:preset; *cls")

Here, we create the instrument variable keithley, which is used for
all further operations on the instrument. Immediately after it, we
send the initialisation and reset message to the instrument.

The next step is to write all the measurement parameters, in
particular the interval time (500ms) and the number of readings (10)
to the instrument. I won’t explain it in detail. Have a look at an
SCPI and/or Keithley 2000 manual.

>>> interval_in_ms = 500
>>> number_of_readings = 10
>>> keithley.write("status:measurement:enable 512; *sre 1")
>>> keithley.write("sample:count %d" % number_of_readings)
>>> keithley.write("trigger:source bus")
>>> keithley.write("trigger:delay %f" % (interval_in_ms / 1000.0))
>>> keithley.write("trace:points %d" % number_of_readings)
>>> keithley.write("trace:feed sense1; feed:control next")

Okay, now the instrument is prepared to do the measurement. The next
three lines make the instrument waiting for a trigger pulse, trigger
it, and wait until it sends a “service request”:

>>> keithley.write("initiate")
>>> keithley.trigger()
>>> keithley.wait_for_srq()

With sending the service request, the instrument tells us that the
measurement has been finished and that the results are ready for
transmission. We could read them with keithley.ask(“trace:data?”)
however, then we’d get

NDCV-000.0004E+0,NDCV-000.0005E+0,NDCV-000.0004E+0,NDCV-000.0007E+0,
NDCV-000.0000E+0,NDCV-000.0007E+0,NDCV-000.0008E+0,NDCV-000.0004E+0,
NDCV-000.0002E+0,NDCV-000.0005E+0

which we would have to convert to a Python list of numbers.
Fortunately, the ask_for_values() method does this work for us:

>>> voltages = keithley.ask_for_values("trace:data?")
>>> print("Average voltage: ", sum(voltages) / len(voltages))

Finally, we should reset the instrument’s data buffer and SRQ status
register, so that it’s ready for a new run. Again, this is explained
in detail in the instrument’s manual:

>>> keithley.ask("status:measurement?")
>>> keithley.write("trace:clear; feed:control next")

That’s it. 18 lines of lucid code. (Well, SCPI is awkward, but
that’s another story.)

VISA resource names

If you use the function get_instrument(), you must tell this
function the VISA resource name of the instrument you want to
connect to. Generally, it starts with the bus type, followed by a
double colon ”::”, followed by the number within the bus. For
example,

GPIB::10

denotes the GPIB instrument with the number 10. If you have two GPIB
boards and the instrument is connected to board number 1, you must
write

GPIB1::10

As for the bus, things like “GPIB”, “USB”, “ASRL” (for
serial/parallel interface) are possible. So for connecting to an
instrument at COM2, the resource name is

ASRL2

(Since only one instrument can be connected with one serial interface,
there is no double colon parameter.) However, most VISA systems allow
aliases such as “COM2” or “LPT1”. You may also add your own
aliases.

The resource name is case-insensitive. It doesn’t matter whether you
say “ASRL2” or “asrl2”. For further information, I have to refer
you to a comprehensive VISA description like
http://www.ni.com/pdf/manuals/370423a.pdf.

 Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyVISA 1.5 documentation

Configuring PyVISA

In most cases PyVISA will be able to find the location of the shared visa library.
If this does not work or you want to use another one, you need to provide the library
path to the VisaLibrary or ResourceManager constructor:

>>> visalib = VisaLibrary('/path/to/library')

or:

>>> rm = ResourceManager('Path to library')

You can make this library the default for all PyVISA applications by using
a configuration file called .pyvisarc (mind the leading dot) in your
home directory [http://en.wikipedia.org/wiki/Home_directory].

	Operating System
	Location

	Windows NT
	<root>\WINNT\Profiles\<username>

	Windows 2000, XP and 2003
	<root>\Documents and Settings\<username>

	Windows Vista, 7 or 8
	<root>\Users\<username>

	Mac OS X
	/Users/<username>

	Linux
	/home/<username> (depends on the distro)

For example in Windows XP, place it in your user folder “Documents and Settings”
folder, e.g. C:\Documents and Settings\smith\.pyvisarc if “smith” is
the name of your login account.

This file has the format of an INI file. For example, if the library
is at /usr/lib/libvisa.so.7, the file .pyvisarc must
contain the following:

[Paths]

VISA library: /usr/lib/libvisa.so.7

Please note that [Paths] is treated case-sensitively.

You can define a site-wide configuration file at
/usr/share/pyvisa/.pyvisarc (It may also be
/usr/local/... depending on the location of your Python).
Under Windows, this file is usually placed at
c:\Python27\share\pyvisa\.pyvisarc.

 Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyVISA 1.5 documentation

Advanced

You can mix the high-level object-oriented approach described in this document
with middle- and low-level VISA function calls (See Architecture for more
information). By doing so, you have full control of your devices:

After you have instantiated the ResourceManager:

>>> import visa
>>> rm = visa.ResourceManager()

you can access corresponding the VisaLibrary instance under the visalib.
attribute. The VisaLibrary object contains low-level functions as directly
exposed by the foreign library, for example:

>>> rm.visalib.viMapAddress(<here goes the arguments>)

To call this functions you need to know the function declaration and how to
interface it to python. To help you out, the VisaLibrary object also contains
middle-level functions. Each middle-level function wraps one low-level function.
In this case:

>>> rm.visalib.map_address(<here goes the arguments>)

The calling convention and types are handled by the wrapper.

You can recognize low an middle-level functions by their names. Low-level functions
carry the same name as in the shared library, and they are prefixed by vi.
Middle-level functions have a friendlier, more pythonic but still recognizable name.

 Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyVISA 1.5 documentation

Instruments

	
class Instrument(resource_name[, **keyw])

	represents an instrument, e.g. a measurement device. It is
independent of a particular bus system, i.e. it may be a GPIB,
serial, USB, or whatever instrument. However, it is not possible
to perform bus-specific operations on instruments created by this
class. For this, have a look at the specialised classes like
GpibInstrument (section Common properties of instrument variables).

The parameter resource_name takes the same syntax as resource
specifiers in VISA. Thus, it begins with the bus system followed
by ”::”, continues with the location of the device within the bus
system, and ends with an optional ”::INSTR”.

Possible keyword arguments are:

	Keyword
	Description

	timeout
	timeout in seconds for all device
operations, see section
Timeouts. Default: 5

	chunk_size
	Length of read data chunks in bytes, see
section Chunk length. Default:
20kB

	values_format
	Data format for lists of read values, see
section Reading binary data.
Default: ascii

	term_char
	termination characters, see section
Termination characters. Default: None

	send_end
	whether to assert END after each write
operation, see section
Termination characters. Default: True

	delay
	delay in seconds after each write
operation, see section
Termination characters. Default: 0

	lock
	whether you want to have exclusive access
to the device. Default: VI_NO_LOCK

For further information about the locking mechanism, see The VISA library
implementation [http://pyvisa.sourceforge.net/vpp43.html].

The class Instrument defines the following methods and attributes:

	
Instrument.write(message)

	writes the string message to the instrument.

	
Instrument.read()

	returns a string sent from the instrument to the computer.

	
Instrument.read_values([format])

	returns a list of decimal values (floats) sent from the instrument to the
computer. See section A more complex example above. The list may
contain only one element or may be empty.

The optional format argument
overrides the setting of values_format. For information about that, see
section Reading binary data.

	
Instrument.ask(message)

	sends the string message to the instrument and returns the answer string from
the instrument.

	
Instrument.ask_for_values(message[, format])

	sends the string message to the instrument and reads the answer as a list of
values, just as read_values() does.

The optional format argument overrides the setting of values_format. For information about that, see
section Reading binary data.

	
Instrument.clear()

	resets the device. This operation is highly bus-dependent. I refer you to the
original VISA documentation, which explains how this is achieved for VXI, GPIB,
serial, etc.

	
Instrument.trigger()

	sends a trigger signal to the instrument.

	
Instrument.read_raw()

	returns a string sent from the instrument to the computer. In contrast to
read(), no termination characters are checked or stripped. You get the
pristine message.

	
Instrument.timeout

	The timeout in seconds for each I/O operation. See section Timeouts
for further information.

	
Instrument.term_chars

	The termination characters for each read and write operation. See section
Termination characters for further information.

	
Instrument.send_end

	Whether or not to assert EOI (or something equivalent, depending on the
interface type) after each write operation. See section Termination characters
for further information.

	
Instrument.delay

	Time in seconds to wait after each write operation. See section
Termination characters for further information.

	
Instrument.values_format

	The format for multi-value data sent from the instrument to the computer. See
section Reading binary data for further information.

Common properties of instrument variables

Timeouts

Very most VISA I/O operations may be performed with a timeout. If a timeout is
set, every operation that takes longer than the timeout is aborted and an
exception is raised. Timeouts are given per instrument.

For all PyVISA objects, a timeout is set with

my_device.timeout = 25

Here, my_device may be a device, an interface or whatever, and its timeout is
set to 25 seconds. Floating-point values are allowed. If you set it to zero,
all operations must succeed instantaneously. You must not set it to None.
Instead, if you want to remove the timeout, just say

del my_device.timeout

Now every operation of the resource takes as long as it takes, even
indefinitely if necessary.

The default timeout is 5 seconds, but you can change it when creating the device object:

my_instrument = instrument("ASRL1", timeout = 8)

This creates the object variable my_instrument and sets its timeout to 8
seconds. In this context, a timeout value of None is allowed, which
removes the timeout for this device.

Note that your local VISA library may round up this value heavily. I experienced this effect with my National
Instruments VISA implementation, which rounds off to 0, 1, 3 and 10 seconds.

Chunk length

If you read data from a device, you must store it somewhere. Unfortunately,
PyVISA must make space for the data before it starts reading, which means
that it must know how much data the device will send. However, it doesn’t know
a priori.

Therefore, PyVISA reads from the device in chunks. Each chunk is
20 kilobytes long by default. If there’s still data to be read, PyVISA repeats
the procedure and eventually concatenates the results and returns it to you.
Those 20 kilobytes are large enough so that mostly one read cycle is
sufficient.

The whole thing happens automatically, as you can see. Normally
you needn’t worry about it. However, some devices don’t like to send data in
chunks. So if you have trouble with a certain device and expect data lengths
larger than the default chunk length, you should increase its value by saying
e.g.

my_instrument.chunk_size = 102400

This example sets it to 100 kilobytes.

Reading binary data

Some instruments allow for sending the measured data in binary form. This has
the advantage that the data transfer is much smaller and takes less time.
PyVISA currently supports three forms of transfers:

	ascii

	This is the default mode. It assumes a normal string with comma- or
whitespace-separated values.

	single

	The values are expected as a binary sequence of IEEE floating point values with
single precision (i.e. four bytes each).
All flavours of binary data streams defined in IEEE488.2 are supported, i.e.
those beginning with <header>#<digit>,
where <header> is optional, and <digit> may also be
“0”.

	double

	The same as single, but with values of double precision (eight bytes each).

You can set the form of transfer with the property values_format, either
with the generation of the object,

from pyvisa.highlevel import ascii, single, double

my_instrument = instrument("GPIB::12", values_format = single)

or later by setting the property directly:

my_instrument.values_format = single

Setting this option affects the methods read_values() and
ask_for_values(). In particular, you must assure separately that the
device actually sends in this format. In some cases it may be necessary to
set the byte order, also known as endianness. PyVISA assumes little-endian
as default. Some instruments call this “swapped” byte order. However, there
is also big-endian byte order. In this case you have to append |
big_endian to your values format:

my_instrument = instrument("GPIB::12", values_format = single | big_endian)

Example

In order to demonstrate how easy reading binary data can be, remember our
example from section A more complex example. You just have to append
the lines

keithley.write("format:data sreal")
keithley.values_format = single

to the initialisation commands, and all measurement data will be transmitted as
binary. You will only notice the increased speed, as PyVISA converts it into
the same list of values as before.

Termination characters

Somehow the computer must detect when the device is finished with sending a
message. It does so by using different methods, depending on the bus system.
In most cases you don’t need to worry about termination characters because the
defaults are very good. However, if you have trouble, you may influence
termination characters with PyVISA.

Termination characters may be one
character or a sequence of characters. Whenever this character or sequence
occurs in the input stream, the read operation is terminated and the read
message is given to the calling application. The next read operation continues
with the input stream immediately after the last termination sequence. In
PyVISA, the termination characters are stripped off the message before it is
given to you.

You may set termination characters for each instrument, e.g.

my_instrument.term_chars = CR

Alternatively you can give it when creating your instrument object:

my_instrument = instrument("GPIB::10", term_chars = CR)

The default value depends on the bus system. Generally, the sequence is empty,
in particular for GPIB . For RS232 it’s CR .

Well, the real default is not “” (the empty string) but None.
There is a subtle difference:
“” really means the termination characters are not used at all, neither for
read nor for write operations. In contrast, None means that every write
operation is implicitly terminated with CR+LF . This works well with most
instruments.

All CRs and LFs are stripped from the end of a read string, no
matter how term_chars is set.

The termination characters sequence is an
ordinary string. CR and LF are just string constants that allow
readable access to “\r” and “\n”. Therefore, instead of CR+LF, you
can also write “\r\n”, whichever you like more.

delay and send_end

There are two further options related to message termination, namely
send_end and delay. send_end is a boolean. If it’s True (the
default), the EOI line is asserted after each write operation, signalling the
end of the operation. EOI is GPIB-specific but similar action is taken for
other interfaces.

The argument delay is the time in seconds to wait after
each write operation. So you could write:

my_instrument = instrument("GPIB::10", send_end = False, delay = 1.2)

This will set the delay to 1.2 seconds, and the EOI line is omitted. By the
way, omitting EOI is not recommended, so if you omit it nevertheless, you
should know what you’re doing.

GPIB devices

	
class GpibInstrument(gpib_identifier[, board_number[, **keyw]])

	represents a GPIB instrument. If gpib_identifier is a string, it is
interpreted as a VISA resource name (section VISA resource names).
If it is a number, it denotes the device number at the GPIB bus.

The optional board_number defaults to zero. If you have more that one GPIB bus system
attached to the computer, you can select the bus with this parameter.

The keyword arguments are interpreted the same as with the class
Instrument.

Note

Since this class is derived from the class Instrument, please refer to
section General devices for the basic operations.
GpibInstrument can do everything that Instrument can do, so
it simply extends the original class with GPIB-specific operations.

The class GpibInstrument defines the following methods:

	
GpibInstrument.wait_for_srq([timeout])

	waits for a serial request (SRQ) coming from the instrument. Note that this
method is not ended when another instrument signals an SRQ, only this
instrument.

The timeout argument, given in seconds, denotes the maximal
waiting time. The default value is 25 (seconds). If you pass None for the
timeout, this method waits forever if no SRQ arrives.

	
class Gpib([board_number])

	represents a GPIB board. Although most setups have at most one GPIB interface
card or USB-GPIB device (with board number 0), theoretically you may have more.
Be that as it may, for board-level operations, i.e. operations that affect the
whole bus with all connected devices, you must create an instance of this
class.

The optional GPIB board number board_number defaults to 0.

The class Gpib defines the following method:

	
Gpib.send_ifc()

	pulses the interface clear line (IFC) for at least 0.1 seconds.

Note

You needn’t store the board instance in a variable. Instead, you may send an
IFC signal just by saying Gpib().send_ifc().

Serial devices

Please note that “serial instrument” means only RS232 and parallel port
instruments, i.e. everything attached to COM and LPT. In particular, it does
not include USB instruments. For USB you have to use Instrument
instead.

	
class SerialInstrument(resource_name[, **keyw])

	represents a serial instrument. resource_name is the VISA resource name, see
section VISA resource names. The general keyword arguments are
interpreted the same as with the class Instrument. The only
difference is the default value for term_chars: For serial instruments,
CR (carriage return) is used to terminate readings and writings.

Note

Since this class is derived from the class Instrument, please refer to
section General devices for all operations.
SerialInstrument can do everything that Instrument can do.

The class SerialInstrument defines the following additional properties.
Note that all properties can also be given as keyword arguments when calling
the class constructor or instrument().

	
SerialInstrument.baud_rate

	The communication speed in baud. The default value is 9600.

	
SerialInstrument.data_bits

	Number of data bits contained in each frame. Its value must be from 5 to 8.
The default is 8.

	
SerialInstrument.stop_bits

	Number of stop bits contained in each frame. Possible values are 1, 1.5, and
2. The default is 1.

	
SerialInstrument.parity

	The parity used with every frame transmitted and received. Possible values
are:

	Value
	Description

	no_parity
	no parity bit is used

	odd_parity
	the parity bit causes odd parity

	even_parity
	the parity bit causes even parity

	mark_parity
	the parity bit exists but it’s always 1

	space_parity
	the parity bit exists but it’s always 0

The default value is no_parity.

	
SerialInstrument.end_input

	This determines the method used to terminate read operations. Possible values
are:

	Value
	Description

	last_bit_end_input
	read will terminate as soon as a character
arrives with its last data bit set

	term_chars_end_input
	read will terminate as soon as the last
character of term_chars is received

The default value is term_chars_end_input.

 Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyVISA 1.5 documentation

Architecture

PyVISA implements convenient and Pythonic programming in three layers:

	Low-level: A wrapper around the shared visa library.

The wrapper defines the argument types and response types of each function,
as well as the conversions between Python objects and foreign types.

You will normally not need to access these functions directly. If you do,
it probably means that we need to improve layer 2.

	Middle-level: A wrapping Python function for each function of the shared visa library.

These functions call the low-level functions, adding some code to deal with
type conversions for functions that return values by reference.
These functions also have comprehensive and Python friendly documentation.

You only need to access this layer if you want to control certain specific
aspects of the VISA library such as memory moving.

	High-level: An object-oriented layer.

It exposes all functionality using three main clases: VisaLibrary,
ResourceManager and Instrument.

It is important to notice that you do not need to import functions from levels 1 and 2,
but you can call them directly from the the VisaLibrary object. Indeed, all level 1
functions are static methods of VisaLibrary. All level 2 functions are bound methods of
VisaLibrary.

Levels 1 and 2 are implemented in the same package called ctwrapper (which stands for
ctypes wrapper). The higher level uses ctwrapper but in principle can use any package.
This will allow us to create other wrappers.

We have two wrappers planned:

	a Mock module that allows you to test a PyVISA program even if you do not have
VISA installed.

	a CFFI based wrapper. CFFI is new python package that allows easier and more
robust wrapping of foreign libraries. It might be part of Python in the future.

 Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyVISA 1.5 documentation

Migrating from PyVISA < 1.5

You don’t need to change anything in your code if you only use the instrument
constructor; and attributes and methods of the resulting object.
For example, this code will run unchanged in modern versions of PyVISA:

import visa
keithley = visa.instrument("GPIB::12")
print(keithley.ask("*IDN?"))

This covers almost every single program that I have seen on the internet.
However, if you use other parts of PyVISA or you are interested in the design
decisions behind the new version you might want to read on.

Some of these decisions were inspired by the visalib package as a part of Lantz [https://lantz.readthedocs.org/]

Short summary

PyVISA 1.5 has full compatibility with previous versions of PyVISA using the
legacy module (changing some of the underlying implementation). But you are
encouraged to do a few things differently if you want to keep up with the
latest developments and be compatible with PyVISA > 1.5.

If you are doing:

>>> import visa
>>> keithley = visa.instrument("GPIB::12")
>>> print(keithley.ask("*IDN?"))

change it to:

>>> import visa
>>> rm = visa.ResourceManager()
>>> keithley = rm.get_instrument("GPIB::12")
>>> print(keithley.ask("*IDN?"))

If you are doing:

>>> print(visa.get_instruments_list())

change it to:

>>> print(rm.list_resources())

If you are doing:

>>> import pyvisa.vpp43 as vpp43
>>> vpp43.visa_library.load_library("/path/to/my/libvisa.so.7")

change it to:

>>> import visa
>>> lib = visa.VisaLibrary("/path/to/my/libvisa.so.7")

If you are doing::

>>> vpp43.lock(session)

change it to:

>>> lib.lock(session)

If you are doing::

>>> inst.term_chars = '\r'

change it to:

>>> inst.read_termination = '\r'
>>> inst.write_termination = '\r'

As you see, most of the code shown above is making a few things explict.
It adds 1 line of code (instantiating the VisaLibrary or ResourceManager object)
which is not a big deal but it makes things cleaner.

If you were using printf, queryf, scanf, sprintf or sscanf of vpp43,
rewrite as pure python code (see below).

If you were using Instrument.delay, change your code or use Instrument.ask_delay
(see below).

A more detailed description

Dropped support for string related functions

The VISA library includes functions to search and manipulate strings such as printf,
queryf, scanf, sprintf and sscanf. This makes sense as visa involves a lot of
string handling operations. The original PyVISA implementation wrapped these functions.
But these operations are easily expressed in pure python and therefore were rarely used.

PyVISA 1.5 keeps these functions for backwards compatibility but it will be removed in 1.6.

We suggest that you replace such functions by a pure python version.

Isolated low-level wrapping module

In the original PyVISA implementation, the low level implementation (vpp43) was
mixed with higher level constructs such as VisaLibrary, VisaException and error
messages. The VISA library was wrapped using ctypes.

In 1.5, we refactored it as ctwrapper, also a ctypes wrapper module but it only
depends on the constants definitions (constants.py). This allows us to test the
foreign function calls by isolating them from higher level abstractions. More importantly,
it also allows us to build new low level modules that can be used as drop in replacements
for ctwrapper in high level modules.

We have two modules planned:

	a Mock module that allows you to test a PyVISA program even if you do not have
VISA installed.

	a CFFI based wrapper. CFFI is new python package that allows easier and more
robust wrapping of foreign libraries. It might be part of Python in the future.

PyVISA 1.5 keeps vpp43 in the legacy subpackage (reimplemented on top of ctwrapper)
to help with the migration but it will be removed in the future.

All functions that were present in vpp43 are now present in ctwrapper but they
take an additional first parameter: the foreign library wrapper.

We suggest that you replace vpp43 by using the new VisaLibrary object which provides
all foreign functions as bound methods (see below).

No singleton objects

The original PyVISA implementation relied on a singleton, global objects for the
library wrapper (named visa_library, an instance of the old pyvisa.vpp43.VisaLibrary)
and the resource manager (named resource_manager, and instance of the old
pyvisa.visa.ResourceManager). These were instantiated on import and the user
could rebind to a different library using the load_library method. Calling this
method however did not affect resource_manager and might lead to an inconsistent
state.

In 1.5, there is a new VisaLibrary class and a new ResourceManager class (they are
both in pyvisa.highlevel). The new classes are not singletons, at least not in the
strict sense. Multiple instances of VisaLibrary and ResourceManager are possible,
but only if they refer to different foreign libraries. In code, this means:

>>> lib1 = visa.VisaLibrary("/path/to/my/libvisa.so.7")
>>> lib2 = visa.VisaLibrary("/path/to/my/libvisa.so.7")
>>> lib3 = visa.VisaLibrary("/path/to/my/libvisa.so.8")
>>> lib1 is lib2
True
>>> lib1 is lib3
False

Most of the time, you will not need access to a VisaLibrary object but to a ResourceManager.
You can do:

>>> lib = visa.VisaLibrary("/path/to/my/libvisa.so.7")
>>> rm = lib.resource_manager

or equivalently:

>>> rm = visa.ResourceManager("/path/to/my/libvisa.so.7")

Note

If the path for the library is not given, the path is obtained from
the user settings file (if exists) or guessed from the OS.

You can still access the legacy classes and global objects:

>>> from pyvisa.legacy import vpp43
>>> from pyvisa.legacy import visa_library, resource_manager

In 1.5, visa_library and resource_manager, instances of the legacy classes,
will be instantiated on import.

VisaLibrary methods as way to call Visa functions

In the original PyVISA implementation, the VisaLibrary class was just having
a reference to the ctypes library and a few functions.

In 1.5, we introduced a new VisaLibrary class (pyvisa.highlevel) which has
every single low level function defined in ctwrapper as bound methods. In code,
this means that you can do:

>>> import visa
>>> lib = visa.VisaLibrary("/path/to/my/libvisa.so.7")
>>> print(lib.read_stb(session))

It also has every single VISA foreign function in the underlying library as static
method. In code, this means that you can do:

>>> lib = visa.VisaLibrary("/path/to/my/libvisa.so.7")
>>> status = ctypes.c_ushort()
>>> ret library.viReadSTB(session, ctypes.byref(status))
>>> print(ret.value)

Removal of Instrument.delay and added Instrument.ask_delay

In the original PyVISA implementation, Instrument takes a delay
argument that adds a pause after each write operation (This also can
be changed using the delay attribute).

In PyVISA 1.5, delay is removed. Delays after write operations must
be added to the application code. Instead, a new attribute and argument
ask_delay is available. This allows you to pause between write and read
operations inside ask. Additionally, ask takes an optional argument
called delay allowing you to change it for each method call.

Deprecated term_chars and automatic removal of CR + LF

In the original PyVISA implementation, Instrument takes a term_chars
argument to change at the read and write termination characters. If this
argument is None, CR + LF is appended to each outgoing message and
not expected for incoming messages (although removed if present).

In PyVISA 1.5, term_chars is replaced by read_termination and
write_termination. In this way, you can set independently the termination
for each operation. term_chars is still present in 1.5 (but will be removed)
and sets both at the same time. Automatic removal of CR + LF is still
present in 1.5 but will be removed in 1.6.

 Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyVISA 1.5 documentation

Contributing to PyVISA

You can contribute in different ways:

Report issues

You can report any issues with the package, the documentation to the PyVISA issue tracker [https://github.com/hgrecco/pyvisa/issues]. Also feel free to submit feature requests, comments or questions. In some cases, platform specific information is required. If you think this is the case, run the following command and paste the output into the issue:

python -c "from pyvisa import util; util.get_debug_info()"

Contribute code

To contribute fixes, code or documentation to PyVISA, send us a patch, or fork PyVISA in github [http://github.com/hgrecco/pyvisa] and submit the changes using a pull request.

 Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyVISA 1.5 documentation

Frequently asked questions

Is PyVISA endorsed by National Instruments?

No. PyVISA is developed independently of National Instrument as a wrapper
for the VISA library.

Who makes PyVISA?

PyVISA was originally programmed by Torsten Bronger and Gregor Thalhammer.
It is based on earlier experiences by Thalhammer.

It was maintained from March 2012 to August 2013 by Florian Bauer.
It is currently maintained by Hernan E. Grecco <hernan.grecco@gmail.com>.

Take a look at AUTHORS [https://github.com/hgrecco/pyvisa/blob/master/AUTHORS] for more information

I found a bug, how can I report it?

Please report it on the Issue Tracker [https://github.com/hgrecco/pyvisa/issues], including operating system, python
version and library version. In addition you might add supporting information
by pasting the output of this command:

python -c "from pyvisa import util; util.get_debug_info()"

Error: Image not found

This error occurs when you have provided an invalid path for the VISA library.
Check that the path provided to the constructor or in the configuration file

Error: Could not found VISA library

This error occurs when you have not provided a path for the VISA library and PyVISA
is not able to find it for you. You can solve it by providing the library path to the
VisaLibrary or ResourceManager constructor:

>>> visalib = VisaLibrary('/path/to/library')

or:

>>> rm = ResourceManager('Path to library')

or by create a configuration file as described in ref:configuring.

Error: No matching architecture

This error occurs when you the Python architecture does not match the VISA
architecture.

Note

PyVISA tries to parse the error from the underlying foreign function
library to provide a more useful error message. If it does not succeed, it
shows the original one.

In Mac OS X the original error message looks like this:

OSError: dlopen(/Library/Frameworks/visa.framework/visa, 6): no suitable image found. Did find:
 /Library/Frameworks/visa.framework/visa: no matching architecture in universal wrapper
 /Library/Frameworks/visa.framework/visa: no matching architecture in universal wrapper

In Linux the original error message looks like this:

OSError: Could not open VISA library:
 Error while accessing /usr/local/vxipnp/linux/bin/libvisa.so.7:/usr/local/vxipnp/linux/bin/libvisa.so.7: wrong ELF class: ELFCLASS32

First, determine the details of your installation with the help of the following debug command:

python -c "from pyvisa import util; util.get_debug_info()"

You will see the ‘bitness’ of the Python interpreter and at the end you will see the list of VISA
libraries that PyVISA was able to find.

The solution is to:

	Install and use a VISA library matching your Python ‘bitness’

Download and install it from National Instruments’s VISA. Run the debug
command again to see if the new library was found by PyVISA. If not,
create a configuration file as described in ref:configuring.

If there is no VISA library with the correct bitness available, try solution 2.

or

	Install and use a Python matching your VISA library ‘bitness’

In Windows and Linux: Download and install Python with the matching bitness.
Run your script again using the new Python

In Mac OS X, Python is usually delivered as universal binary (32 and 64 bits).

You can run it in 32 bit by running:

arch -i386 python myscript.py

or in 64 bits by running:

arch -x86_64 python myscript.py

You can create an alias by adding the following line

alias python32=”arch -i386 python”

into your .bashrc or .profile or ~/.bash_profile (or whatever file depending
on which shell you are using.)

You can also create a virtual environment [http://www.virtualenv.org/en/latest/] for this.

Where can I get more information about VISA?

	The original VISA docs:
	VISA specification [http://www.ivifoundation.org/Downloads/Specifications.htm] (scroll down to the end)

	VISA library specification [http://www.ivifoundation.org/Downloads/Class%20Specifications/vpp43.doc]

	VISA specification for textual languages [http://www.ivifoundation.org/Downloads/Class%20Specifications/vpp432.doc]

	The very good VISA manuals from National Instruments’s VISA [http://ni.com/visa/]:
	NI-VISA User Manual [http://digital.ni.com/manuals.nsf/websearch/266526277DFF74F786256ADC0065C50C]

	NI-VISA Programmer Reference Manual [http://digital.ni.com/manuals.nsf/websearch/87E52268CF9ACCEE86256D0F006E860D]

	NI-VISA help file [http://digital.ni.com/manuals.nsf/websearch/21992F3750B967ED86256F47007B00B3] in HTML

 Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyVISA 1.5 documentation

API

	Highlevel module

	Functions in the ctypes wrapper module

 Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyVISA 1.5 documentation

 	API

Highlevel module

	
class pyvisa.highlevel.VisaLibrary[source]

	High level VISA Library wrapper.

The easiest way to instantiate the library is to let pyvisa find the
right one for you. This looks first in your configuration file (~/.pyvisarc).
If it fails, it uses ctypes.util.find_library to try to locate a library
in a way similar to what the compiler does:

>>> visa_library = VisaLibrary()

But you can also specify the path:

>>> visa_library = VisaLibrary('/my/path/visa.so')

Or use the from_paths constructor if you want to try multiple paths:

>>> visa_library = VisaLibrary.from_paths(['/my/path/visa.so', '/maybe/this/visa.so'])

	Parameters:	library_path – path of the VISA library.

	
assert_interrupt_signal(library, session, mode, status_id)

	Asserts the specified interrupt or signal.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	mode – How to assert the interrupt. (Constants.ASSERT*)

	status_id – This is the status value to be presented during an interrupt acknowledge cycle.

	
assert_trigger(library, session, protocol)

	Asserts software or hardware trigger.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	protocol – Trigger protocol to use during assertion. (Constants.PROT*)

	
assert_utility_signal(library, session, line)

	Asserts or deasserts the specified utility bus signal.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	line – specifies the utility bus signal to assert. (Constants.UTIL_ASSERT*)

	
buffer_read(library, session, count)

	Reads data from device or interface through the use of a formatted I/O read buffer.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	count – Number of bytes to be read.

	Returns:	data read.

	Return type:	bytes

	
buffer_write(library, session, data)

	Writes data to a formatted I/O write buffer synchronously.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	data (bytes) – data to be written.

	Returns:	number of written bytes.

	
clear(library, session)

	Clears a device.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	
close(library, session)

	Closes the specified session, event, or find list.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session, event, or find list.

	
disable_event(library, session, event_type, mechanism)

	Disables notification of the specified event type(s) via the specified mechanism(s).

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	event_type – Logical event identifier.

	mechanism – Specifies event handling mechanisms to be disabled.
(Constants.QUEUE, .Handler, .SUSPEND_HNDLR, .ALL_MECH)

	
discard_events(library, session, event_type, mechanism)

	Discards event occurrences for specified event types and mechanisms in a session.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	event_type – Logical event identifier.

	mechanism – Specifies event handling mechanisms to be disabled.
(Constants.QUEUE, .Handler, .SUSPEND_HNDLR, .ALL_MECH)

	
enable_event(library, session, event_type, mechanism, context=0)

	Enable event occurrences for specified event types and mechanisms in a session.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	event_type – Logical event identifier.

	mechanism – Specifies event handling mechanisms to be disabled.
(Constants.QUEUE, .Handler, .SUSPEND_HNDLR)

	context –

	
find_next(library, find_list)

	Returns the next resource from the list of resources found during a previous call to find_resources().

	Parameters:	
	library – the visa library wrapped by ctypes.

	find_list – Describes a find list. This parameter must be created by find_resources().

	Returns:	Returns a string identifying the location of a device.

	Return type:	unicode (Py2) or str (Py3)

	
find_resources(library, session, query)

	Queries a VISA system to locate the resources associated with a specified interface.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session (unused, just to uniform signatures).

	query – A regular expression followed by an optional logical expression. Use ‘?*’ for all.

	Returns:	find_list, return_counter, instrument_description

	Return type:	ViFindList, int, unicode (Py2) or str (Py3)

	
flush(library, session, mask)

	Manually flushes the specified buffers associated with formatted I/O operations and/or serial communication.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	mask – Specifies the action to be taken with flushing the buffer.
(Constants.READ*, .WRITE*, .IO*)

	
classmethod from_paths(*paths)[source]

	Helper constructor that tries to instantiate VisaLibrary from an
iterable of possible library paths.

	
get_attribute(library, session, attribute)

	Retrieves the state of an attribute.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session, event, or find list.

	attribute – Resource attribute for which the state query is made (see Attributes.*)

	Returns:	The state of the queried attribute for a specified resource.

	Return type:	unicode (Py2) or str (Py3), list or other type

	
get_default_resource_manager(library)

	This function returns a session to the Default Resource Manager resource.

	Parameters:	library – the visa library wrapped by ctypes.

	Returns:	Unique logical identifier to a Default Resource Manager session.

	
gpib_command(library, session, data)

	Write GPIB command bytes on the bus.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	data (bytes) – data tor write.

	Returns:	Number of written bytes.

	
gpib_control_atn(library, session, mode)

	Specifies the state of the ATN line and the local active controller state.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	mode – Specifies the state of the ATN line and optionally the local active controller state.
(Constants.GPIB_ATN*)

	
gpib_control_ren(library, session, mode)

	Controls the state of the GPIB Remote Enable (REN) interface line, and optionally the remote/local
state of the device.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	mode – Specifies the state of the REN line and optionally the device remote/local state.
(Constants.GPIB_REN*)

	
gpib_pass_control(library, session, primary_address, secondary_address)

	Tell the GPIB device at the specified address to become controller in charge (CIC).

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	primary_address – Primary address of the GPIB device to which you want to pass control.

	secondary_address – Secondary address of the targeted GPIB device.
If the targeted device does not have a secondary address,
this parameter should contain the value Constants.NO_SEC_ADDR.

	
gpib_send_ifc(library, session)

	Pulse the interface clear line (IFC) for at least 100 microseconds.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	
in_16(library, session, space, offset, extended=False)

	Reads in an 16-bit value from the specified memory space and offset.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	space – Specifies the address space. (Constants.*SPACE*)

	offset – Offset (in bytes) of the address or register from which to read.

	extended – Use 64 bits offset independent of the platform.

	Returns:	Data read from memory.

	
in_32(library, session, space, offset, extended=False)

	Reads in an 32-bit value from the specified memory space and offset.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	space – Specifies the address space. (Constants.*SPACE*)

	offset – Offset (in bytes) of the address or register from which to read.

	extended – Use 64 bits offset independent of the platform.

	Returns:	Data read from memory.

	
in_8(library, session, space, offset, extended=False)

	Reads in an 8-bit value from the specified memory space and offset.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	space – Specifies the address space. (Constants.*SPACE*)

	offset – Offset (in bytes) of the address or register from which to read.

	extended – Use 64 bits offset independent of the platform.

	Returns:	Data read from memory.

	
install_handler(session, event_type, handler, user_handle=None)[source]

	Installs handlers for event callbacks.

	Parameters:	
	session – Unique logical identifier to a session.

	event_type – Logical event identifier.

	handler – Interpreted as a valid reference to a handler to be installed by a client application.

	user_handle – A value specified by an application that can be used for identifying handlers
uniquely for an event type.

	Returns:	user handle (a ctypes object)

	
lock(library, session, lock_type, timeout, requested_key=None)

	Establishes an access mode to the specified resources.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	lock_type – Specifies the type of lock requested, either Constants.EXCLUSIVE_LOCK or Constants.SHARED_LOCK.

	timeout – Absolute time period (in milliseconds) that a resource waits to get unlocked by the
locking session before returning an error.

	requested_key – This parameter is not used and should be set to VI_NULL when lockType is VI_EXCLUSIVE_LOCK.

	Returns:	access_key that can then be passed to other sessions to share the lock.

	
map_address(library, session, map_space, map_base, map_size, access=0, suggested=0)

	Maps the specified memory space into the process’s address space.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	map_space – Specifies the address space to map. (Constants.*SPACE*)

	map_base – Offset (in bytes) of the memory to be mapped.

	map_size – Amount of memory to map (in bytes).

	access –

	suggested – If not Constants.NULL (0), the operating system attempts to map the memory to the address
specified in suggested. There is no guarantee, however, that the memory will be mapped to
that address. This operation may map the memory into an address region different from
suggested.

	Returns:	Address in your process space where the memory was mapped.

	
map_trigger(library, session, trigger_source, trigger_destination, mode)

	Map the specified trigger source line to the specified destination line.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	trigger_source – Source line from which to map. (Constants.TRIG*)

	trigger_destination – Destination line to which to map. (Constants.TRIG*)

	mode –

	
memory_allocation(library, session, size, extended=False)

	Allocates memory from a resource’s memory region.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	size – Specifies the size of the allocation.

	extended – Use 64 bits offset independent of the platform.

	Returns:	Returns the offset of the allocated memory.

	
memory_free(library, session, offset, extended=False)

	Frees memory previously allocated using the memory_allocation() operation.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	offset – Offset of the memory to free.

	extended – Use 64 bits offset independent of the platform.

	
move(library, session, source_space, source_offset, source_width, destination_space, destination_offset, destination_width, length)

	Moves a block of data.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	source_space – Specifies the address space of the source.

	source_offset – Offset of the starting address or register from which to read.

	source_width – Specifies the data width of the source.

	destination_space – Specifies the address space of the destination.

	destination_offset – Offset of the starting address or register to which to write.

	destination_width – Specifies the data width of the destination.

	length – Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

	
move_asynchronously(library, session, source_space, source_offset, source_width, destination_space, destination_offset, destination_width, length)

	Moves a block of data asynchronously.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	source_space – Specifies the address space of the source.

	source_offset – Offset of the starting address or register from which to read.

	source_width – Specifies the data width of the source.

	destination_space – Specifies the address space of the destination.

	destination_offset – Offset of the starting address or register to which to write.

	destination_width – Specifies the data width of the destination.

	length – Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

	Returns:	Job identifier of this asynchronous move operation.

	
move_in_16(library, session, space, offset, length, extended=False)

	Moves an 16-bit block of data from the specified address space and offset to local memory.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	space – Specifies the address space. (Constants.*SPACE*)

	offset – Offset (in bytes) of the address or register from which to read.

	length – Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

	extended – Use 64 bits offset independent of the platform.

	Returns:	Data read from bus.

Corresponds to viMoveIn16 functions of the visa library.

	
move_in_32(library, session, space, offset, length, extended=False)

	Moves an 32-bit block of data from the specified address space and offset to local memory.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	space – Specifies the address space. (Constants.*SPACE*)

	offset – Offset (in bytes) of the address or register from which to read.

	length – Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

	extended – Use 64 bits offset independent of the platform.

	Returns:	Data read from bus.

Corresponds to viMoveIn32 functions of the visa library.

	
move_in_8(library, session, space, offset, length, extended=False)

	Moves an 8-bit block of data from the specified address space and offset to local memory.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	space – Specifies the address space. (Constants.*SPACE*)

	offset – Offset (in bytes) of the address or register from which to read.

	length – Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

	extended – Use 64 bits offset independent of the platform.

	Returns:	Data read from bus.

Corresponds to viMoveIn8 functions of the visa library.

	
move_out_16(library, session, space, offset, length, data, extended=False)

	Moves an 16-bit block of data from local memory to the specified address space and offset.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	space – Specifies the address space. (Constants.*SPACE*)

	offset – Offset (in bytes) of the address or register from which to read.

	length – Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

	data – Data to write to bus.

	extended – Use 64 bits offset independent of the platform.

Corresponds to viMoveOut16 functions of the visa library.

	
move_out_32(library, session, space, offset, length, data, extended=False)

	Moves an 32-bit block of data from local memory to the specified address space and offset.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	space – Specifies the address space. (Constants.*SPACE*)

	offset – Offset (in bytes) of the address or register from which to read.

	length – Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

	data – Data to write to bus.

	extended – Use 64 bits offset independent of the platform.

Corresponds to viMoveOut32 functions of the visa library.

	
move_out_8(library, session, space, offset, length, data, extended=False)

	Moves an 8-bit block of data from local memory to the specified address space and offset.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	space – Specifies the address space. (Constants.*SPACE*)

	offset – Offset (in bytes) of the address or register from which to read.

	length – Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

	data – Data to write to bus.

	extended – Use 64 bits offset independent of the platform.

Corresponds to viMoveOut8 functions of the visa library.

	
open(library, session, resource_name, access_mode=0, open_timeout=0)

	Opens a session to the specified resource.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Resource Manager session (should always be a session returned from open_default_resource_manager()).

	resource_name – Unique symbolic name of a resource.

	access_mode – Specifies the mode by which the resource is to be accessed. (Constants.NULL or Constants.*LOCK*)

	open_timeout – Specifies the maximum time period (in milliseconds) that this operation waits
before returning an error.

	Returns:	Unique logical identifier reference to a session.

	
open_default_resource_manager(library)

	This function returns a session to the Default Resource Manager resource.

	Parameters:	library – the visa library wrapped by ctypes.

	Returns:	Unique logical identifier to a Default Resource Manager session.

	
out_16(library, session, space, offset, data, extended=False)

	Write in an 16-bit value from the specified memory space and offset.
:param library: the visa library wrapped by ctypes.
:param session: Unique logical identifier to a session.
:param space: Specifies the address space. (Constants.*SPACE*)
:param offset: Offset (in bytes) of the address or register from which to read.
:param data: Data to write to bus.
:param extended: Use 64 bits offset independent of the platform.

Corresponds to viOut16 functions of the visa library.

	
out_32(library, session, space, offset, data, extended=False)

	Write in an 32-bit value from the specified memory space and offset.
:param library: the visa library wrapped by ctypes.
:param session: Unique logical identifier to a session.
:param space: Specifies the address space. (Constants.*SPACE*)
:param offset: Offset (in bytes) of the address or register from which to read.
:param data: Data to write to bus.
:param extended: Use 64 bits offset independent of the platform.

Corresponds to viOut32 functions of the visa library.

	
out_8(library, session, space, offset, data, extended=False)

	Write in an 8-bit value from the specified memory space and offset.
:param library: the visa library wrapped by ctypes.
:param session: Unique logical identifier to a session.
:param space: Specifies the address space. (Constants.*SPACE*)
:param offset: Offset (in bytes) of the address or register from which to read.
:param data: Data to write to bus.
:param extended: Use 64 bits offset independent of the platform.

Corresponds to viOut8 functions of the visa library.

	
parse_resource(library, session, resource_name)

	Parse a resource string to get the interface information.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Resource Manager session (should always be the Default Resource Manager for VISA
returned from open_default_resource_manager()).

	resource_name – Unique symbolic name of a resource.

	Returns:	Resource information with interface type and board number.

	Return type:	:class:ResourceInfo

	
parse_resource_extended(library, session, resource_name)

	Parse a resource string to get extended interface information.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Resource Manager session (should always be the Default Resource Manager for VISA
returned from open_default_resource_manager()).

	resource_name – Unique symbolic name of a resource.

	Returns:	Resource information.

	Return type:	:class:ResourceInfo

	
peek_16(library, session, address)

	Read an 16-bit value from the specified address.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	address – Source address to read the value.

	Returns:	Data read from bus.

	Return type:	bytes

	
peek_32(library, session, address)

	Read an 32-bit value from the specified address.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	address – Source address to read the value.

	Returns:	Data read from bus.

	Return type:	bytes

	
peek_8(library, session, address)

	Read an 8-bit value from the specified address.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	address – Source address to read the value.

	Returns:	Data read from bus.

	Return type:	bytes

	
poke_16(library, session, address, data)

	Write an 16-bit value from the specified address.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	address – Source address to read the value.

	data – value to be written to the bus.

	Returns:	Data read from bus.

	
poke_32(library, session, address, data)

	Write an 32-bit value from the specified address.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	address – Source address to read the value.

	data – value to be written to the bus.

	Returns:	Data read from bus.

	
poke_8(library, session, address, data)

	Write an 8-bit value from the specified address.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	address – Source address to read the value.

	data – value to be written to the bus.

	Returns:	Data read from bus.

	
read(library, session, count)

	Reads data from device or interface synchronously.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	count – Number of bytes to be read.

	Returns:	data read.

	Return type:	bytes

	
read_asynchronously(library, session, count)

	Reads data from device or interface asynchronously.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	count – Number of bytes to be read.

	Returns:	(ctypes buffer with result, jobid)

	
read_stb(library, session)

	Reads a status byte of the service request.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	Returns:	Service request status byte.

	
read_to_file(library, session, filename, count)

	Read data synchronously, and store the transferred data in a file.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	filename – Name of file to which data will be written.

	count – Number of bytes to be read.

	Returns:	Number of bytes actually transferred.

	
resource_manager[source]

	Default resource manager object for this library.

	
set_attribute(library, session, attribute, attribute_state)

	Sets the state of an attribute.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	attribute – Attribute for which the state is to be modified. (Attributes.*)

	attribute_state – The state of the attribute to be set for the specified object.

	
set_buffer(library, session, mask, size)

	Sets the size for the formatted I/O and/or low-level I/O communication buffer(s).

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	mask – Specifies the type of buffer. (Constants.READ_BUF, .WRITE_BUF, .IO_IN_BUF, .IO_OUT_BUF)

	size – The size to be set for the specified buffer(s).

	
status[source]

	Last return value of the library.

	
status_description(library, session, status)

	Returns a user-readable description of the status code passed to the operation.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	status – Status code to interpret.

	Returns:	The user-readable string interpretation of the status code passed to the operation.

	Return type:	unicode (Py2) or str (Py3)

	
terminate(library, session, degree, job_id)

	Requests a VISA session to terminate normal execution of an operation.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	degree – Constants.NULL

	job_id – Specifies an operation identifier.

	
uninstall_handler(session, event_type, handler, user_handle=None)[source]

	Uninstalls handlers for events.

	Parameters:	
	session – Unique logical identifier to a session.

	event_type – Logical event identifier.

	handler – Interpreted as a valid reference to a handler to be uninstalled by a client application.

	user_handle – A value specified by an application that can be used for identifying handlers
uniquely in a session for an event.

	
unlock(library, session)

	Relinquishes a lock for the specified resource.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	
unmap_address(library, session)

	Unmaps memory space previously mapped by map_address().

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	
unmap_trigger(library, session, trigger_source, trigger_destination)

	Undo a previous map from the specified trigger source line to the specified destination line.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	trigger_source – Source line used in previous map. (Constants.TRIG*)

	trigger_destination – Destination line used in previous map. (Constants.TRIG*)

	
usb_control_in(library, session, request_type_bitmap_field, request_id, request_value, index, length=0)

	Performs a USB control pipe transfer from the device.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	request_type_bitmap_field – bmRequestType parameter of the setup stage of a USB control transfer.

	request_id – bRequest parameter of the setup stage of a USB control transfer.

	request_value – wValue parameter of the setup stage of a USB control transfer.

	index – wIndex parameter of the setup stage of a USB control transfer.
This is usually the index of the interface or endpoint.

	length – wLength parameter of the setup stage of a USB control transfer.
This value also specifies the size of the data buffer to receive the data from the
optional data stage of the control transfer.

	Returns:	The data buffer that receives the data from the optional data stage of the control transfer.

	Return type:	bytes

	
usb_control_out(library, session, request_type_bitmap_field, request_id, request_value, index, data=u'')

	Performs a USB control pipe transfer to the device.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	request_type_bitmap_field – bmRequestType parameter of the setup stage of a USB control transfer.

	request_id – bRequest parameter of the setup stage of a USB control transfer.

	request_value – wValue parameter of the setup stage of a USB control transfer.

	index – wIndex parameter of the setup stage of a USB control transfer.
This is usually the index of the interface or endpoint.

	data – The data buffer that sends the data in the optional data stage of the control transfer.

	
vxi_command_query(library, session, mode, command)

	Sends the device a miscellaneous command or query and/or retrieves the response to a previous query.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	mode – Specifies whether to issue a command and/or retrieve a response. (Constants.VXI_CMD*, .VXI_RESP*)

	command – The miscellaneous command to send.

	Returns:	The response retrieved from the device.

	
wait_on_event(library, session, in_event_type, timeout)

	Waits for an occurrence of the specified event for a given session.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	in_event_type – Logical identifier of the event(s) to wait for.

	timeout – Absolute time period in time units that the resource shall wait for a specified event to
occur before returning the time elapsed error. The time unit is in milliseconds.

	Returns:	Logical identifier of the event actually received, A handle specifying the unique occurrence of an event.

	
write(library, session, data)

	Writes data to device or interface synchronously.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	data (str [http://docs.python.org/library/functions.html#str]) – data to be written.

	Returns:	Number of bytes actually transferred.

	
write_asynchronously(library, session, data)

	Writes data to device or interface asynchronously.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	data – data to be written.

	Returns:	Job ID of this asynchronous write operation.

	
write_from_file(library, session, filename, count)

	Take data from a file and write it out synchronously.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	filename – Name of file from which data will be read.

	count – Number of bytes to be written.

	Returns:	Number of bytes actually transferred.

	
class pyvisa.highlevel.ResourceManager[source]

	VISA Resource Manager

	Parameters:	visa_library – VisaLibrary Instance or path of the VISA library
(if not given, the default for the platform will be used).

	
get_instrument(resource_name, **kwargs)[source]

	Return an instrument for the resource name.

	Parameters:	
	resource_name – name or alias of the resource to open.

	kwargs – keyword arguments to be passed to the instrument constructor.

	
list_resources(query='?*::INSTR')[source]

	Returns a tuple of all connected devices matching query.

	Parameters:	query – regular expression used to match devices.

	
list_resources_info(query='?*::INSTR')[source]

	Returns a dictionary mapping resource names to resource extended
information of all connected devices matching query.

	Parameters:	query – regular expression used to match devices.

	Returns:	Mapping of resource name to ResourceInfo

	Return type:	dict

	
open_resource(resource_name, access_mode=0, open_timeout=0)[source]

	Open the specified resources.

	Parameters:	
	resource_name – name or alias of the resource to open.

	access_mode – access mode.

	open_timeout – time out to open.

	Returns:	Unique logical identifier reference to a session.

	
resource_info(resource_name)[source]

	Get the extended information of a particular resource

	Parameters:	resource_name – Unique symbolic name of a resource.

	Return type:	ResourceInfo

	
class pyvisa.highlevel.Instrument(resource_name, resource_manager=None, **kwargs)[source]

	Class for all kinds of Instruments.

It can be instantiated, however, if you want to use special features of a
certain interface system (GPIB, USB, RS232, etc), you must instantiate one
of its child classes.

	Parameters:	
	resource_name – the instrument’s resource name or an alias,
may be taken from the list from
list_resources method from a ResourceManager.

	timeout – the VISA timeout for each low-level operation in
milliseconds.

	term_chars – the termination characters for this device.

	chunk_size – size of data packets in bytes that are read from the
device.

	lock – whether you want to have exclusive access to the device.
Default: VI_NO_LOCK

	ask_delay – waiting time in seconds after each write command.
Default: 0.0

	send_end – whether to assert end line after each write command.
Default: True

	values_format – floating point data value format. Default: ascii (0)

	
ask(message, delay=None)[source]

	A combination of write(message) and read()

	Parameters:	
	message (str [http://docs.python.org/library/functions.html#str]) – the message to send.

	delay – delay in seconds between write and read operations.
if None, defaults to self.ask_delay

	Returns:	the answer from the device.

	Return type:	str

	
ask_for_values(message, format=None, delay=None)[source]

	A combination of write(message) and read_values()

	Parameters:	
	message (str [http://docs.python.org/library/functions.html#str]) – the message to send.

	delay – delay in seconds between write and read operations.
if None, defaults to self.ask_delay

	Returns:	the answer from the device.

	Return type:	list

	
encoding[source]

	Encoding used for read and write operations.

	
read(termination=None, encoding=None)[source]

	Read a string from the device.

Reading stops when the device stops sending (e.g. by setting
appropriate bus lines), or the termination characters sequence was
detected. Attention: Only the last character of the termination
characters is really used to stop reading, however, the whole sequence
is compared to the ending of the read string message. If they don’t
match, a warning is issued.

All line-ending characters are stripped from the end of the string.

	Return type:	str

	
read_raw(size=None)[source]

	Read the unmodified string sent from the instrument to the computer.

In contrast to read(), no termination characters are stripped.

	Return type:	bytes

	
read_termination[source]

	Read termination character.

	
read_values(fmt=None)[source]

	Read a list of floating point values from the device.

	Parameters:	fmt – the format of the values. If given, it overrides
the class attribute “values_format”. Possible values are bitwise
disjunctions of the above constants ascii, single, double, and
big_endian. Default is ascii.

	Returns:	the list of read values

	Return type:	list

	
send_end[source]

	Whether or not to assert EOI (or something equivalent after each
write operation.

	
term_chars[source]

	Set or read a new termination character sequence (property).

Normally, you just give the new termination sequence, which is appended
to each write operation (unless it’s already there), and expected as
the ending mark during each read operation. A typical example is CR+LF
or just CR. If you assign “” to this property, the termination
sequence is deleted.

The default is None, which means that CR + LF is appended to each write
operation but not expected after each read operation (but stripped if
present).

	
trigger()[source]

	Sends a software trigger to the device.

	
write(message, termination=None, encoding=None)[source]

	Write a string message to the device.

The term_chars are appended to it, unless they are already.

	Parameters:	message (unicode (Py2) or str (Py3)) – the message to be sent.

	Returns:	number of bytes written.

	Return type:	int

	
write_raw(message)[source]

	Write a string message to the device.

The term_chars are appended to it, unless they are already.

	Parameters:	message (bytes) – the message to be sent.

	Returns:	number of bytes written.

	Return type:	int

	
write_termination[source]

	Writer termination character.

	
class pyvisa.highlevel.SerialInstrument(resource_name, resource_manager=None, **keyw)[source]

	Class for serial (RS232 or parallel port) instruments. Not USB!

This class extents the Instrument class with special operations and
properties of serial instruments.

	Parameters:	resource_name – the instrument’s resource name or an alias, may be
taken from the list from list_resources method from a ResourceManager.

Further keyword arguments are passed to the constructor of class
Instrument.

	
baud_rate[source]

	The baud rate of the serial instrument.

	
data_bits[source]

	Number of data bits contained in each frame (from 5 to 8).

	
end_input[source]

	indicates the method used to terminate read operations

	
parity[source]

	The parity used with every frame transmitted and received.

	
stop_bits[source]

	Number of stop bits contained in each frame (1, 1.5, or 2).

	
class pyvisa.highlevel.GpibInstrument(gpib_identifier, board_number=0, resource_manager=None, **keyw)[source]

	Class for GPIB instruments.

This class extents the Instrument class with special operations and
properties of GPIB instruments.

	Parameters:	
	gpib_identifier – strings are interpreted as instrument’s VISA resource name.
Numbers are interpreted as GPIB number.

	board_number – the number of the GPIB bus.

Further keyword arguments are passed to the constructor of class
Instrument.

	
stb[source]

	Service request status register.

	
wait_for_srq(timeout=25)[source]

	Wait for a serial request (SRQ) coming from the instrument.

Note that this method is not ended when another instrument signals an
SRQ, only this instrument.

	Parameters:	timeout – the maximum waiting time in seconds.
Defaul: 25 (seconds).
None means waiting forever if necessary.

 Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyVISA 1.5 documentation

 	API

Functions in the ctypes wrapper module

pyvisa.wrapper.functions

Defines VPP 4.3.2 wrapping functions, adding signatures to the library.

This file is part of PyVISA.

	copyright:	2014 by PyVISA Authors, see AUTHORS for more details.

	license:	MIT, see LICENSE for more details.

	
pyvisa.ctwrapper.functions.set_signatures(library, errcheck=None)[source]

	Set the signatures of most visa functions in the library.

All instrumentation related functions are specified here.
String related functions such as viPrintf require a cdecl
calling convention even in windows and therefore are require
a CDLL object. See set_cdecl_signatures.

	Parameters:	
	library (ctypes.WinDLL or ctypes.CDLL) – the visa library wrapped by ctypes.

	errcheck – error checking callable used for visa functions that return
ViStatus.
It should be take three areguments (result, func, arguments).
See errcheck in ctypes.

	
pyvisa.ctwrapper.functions.set_cdecl_signatures(clibrary, errcheck=None)[source]

	Set the signatures of visa functions requiring a cdecl calling convention.

	Parameters:	
	clibrary (ctypes.CDLL [http://docs.python.org/library/ctypes.html#ctypes.CDLL]) – the visa library wrapped by ctypes.

	errcheck – error checking callable used for visa functions that return
ViStatus.
It should be take three areguments (result, func, arguments).
See errcheck in ctypes.

	
pyvisa.ctwrapper.functions.assert_interrupt_signal(library, session, mode, status_id)[source]

	Asserts the specified interrupt or signal.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	mode – How to assert the interrupt. (Constants.ASSERT*)

	status_id – This is the status value to be presented during an interrupt acknowledge cycle.

	
pyvisa.ctwrapper.functions.assert_trigger(library, session, protocol)[source]

	Asserts software or hardware trigger.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	protocol – Trigger protocol to use during assertion. (Constants.PROT*)

	
pyvisa.ctwrapper.functions.assert_utility_signal(library, session, line)[source]

	Asserts or deasserts the specified utility bus signal.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	line – specifies the utility bus signal to assert. (Constants.UTIL_ASSERT*)

	
pyvisa.ctwrapper.functions.buffer_read(library, session, count)[source]

	Reads data from device or interface through the use of a formatted I/O read buffer.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	count – Number of bytes to be read.

	Returns:	data read.

	Return type:	bytes

	
pyvisa.ctwrapper.functions.buffer_write(library, session, data)[source]

	Writes data to a formatted I/O write buffer synchronously.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	data (bytes) – data to be written.

	Returns:	number of written bytes.

	
pyvisa.ctwrapper.functions.clear(library, session)[source]

	Clears a device.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	
pyvisa.ctwrapper.functions.close(library, session)[source]

	Closes the specified session, event, or find list.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session, event, or find list.

	
pyvisa.ctwrapper.functions.disable_event(library, session, event_type, mechanism)[source]

	Disables notification of the specified event type(s) via the specified mechanism(s).

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	event_type – Logical event identifier.

	mechanism – Specifies event handling mechanisms to be disabled.
(Constants.QUEUE, .Handler, .SUSPEND_HNDLR, .ALL_MECH)

	
pyvisa.ctwrapper.functions.discard_events(library, session, event_type, mechanism)[source]

	Discards event occurrences for specified event types and mechanisms in a session.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	event_type – Logical event identifier.

	mechanism – Specifies event handling mechanisms to be disabled.
(Constants.QUEUE, .Handler, .SUSPEND_HNDLR, .ALL_MECH)

	
pyvisa.ctwrapper.functions.enable_event(library, session, event_type, mechanism, context=0)[source]

	Enable event occurrences for specified event types and mechanisms in a session.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	event_type – Logical event identifier.

	mechanism – Specifies event handling mechanisms to be disabled.
(Constants.QUEUE, .Handler, .SUSPEND_HNDLR)

	context –

	
pyvisa.ctwrapper.functions.find_next(library, find_list)[source]

	Returns the next resource from the list of resources found during a previous call to find_resources().

	Parameters:	
	library – the visa library wrapped by ctypes.

	find_list – Describes a find list. This parameter must be created by find_resources().

	Returns:	Returns a string identifying the location of a device.

	Return type:	unicode (Py2) or str (Py3)

	
pyvisa.ctwrapper.functions.find_resources(library, session, query)[source]

	Queries a VISA system to locate the resources associated with a specified interface.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session (unused, just to uniform signatures).

	query – A regular expression followed by an optional logical expression. Use ‘?*’ for all.

	Returns:	find_list, return_counter, instrument_description

	Return type:	ViFindList, int, unicode (Py2) or str (Py3)

	
pyvisa.ctwrapper.functions.flush(library, session, mask)[source]

	Manually flushes the specified buffers associated with formatted I/O operations and/or serial communication.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	mask – Specifies the action to be taken with flushing the buffer.
(Constants.READ*, .WRITE*, .IO*)

	
pyvisa.ctwrapper.functions.get_attribute(library, session, attribute)[source]

	Retrieves the state of an attribute.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session, event, or find list.

	attribute – Resource attribute for which the state query is made (see Attributes.*)

	Returns:	The state of the queried attribute for a specified resource.

	Return type:	unicode (Py2) or str (Py3), list or other type

	
pyvisa.ctwrapper.functions.get_default_resource_manager(library)

	A deprecated alias. See VPP-4.3, rule 4.3.5 and observation 4.3.2.

	
pyvisa.ctwrapper.functions.gpib_command(library, session, data)[source]

	Write GPIB command bytes on the bus.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	data (bytes) – data tor write.

	Returns:	Number of written bytes.

	
pyvisa.ctwrapper.functions.gpib_control_atn(library, session, mode)[source]

	Specifies the state of the ATN line and the local active controller state.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	mode – Specifies the state of the ATN line and optionally the local active controller state.
(Constants.GPIB_ATN*)

	
pyvisa.ctwrapper.functions.gpib_control_ren(library, session, mode)[source]

	Controls the state of the GPIB Remote Enable (REN) interface line, and optionally the remote/local
state of the device.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	mode – Specifies the state of the REN line and optionally the device remote/local state.
(Constants.GPIB_REN*)

	
pyvisa.ctwrapper.functions.gpib_pass_control(library, session, primary_address, secondary_address)[source]

	Tell the GPIB device at the specified address to become controller in charge (CIC).

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	primary_address – Primary address of the GPIB device to which you want to pass control.

	secondary_address – Secondary address of the targeted GPIB device.
If the targeted device does not have a secondary address,
this parameter should contain the value Constants.NO_SEC_ADDR.

	
pyvisa.ctwrapper.functions.gpib_send_ifc(library, session)[source]

	Pulse the interface clear line (IFC) for at least 100 microseconds.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	
pyvisa.ctwrapper.functions.in_16(library, session, space, offset, extended=False)[source]

	Reads in an 16-bit value from the specified memory space and offset.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	space – Specifies the address space. (Constants.*SPACE*)

	offset – Offset (in bytes) of the address or register from which to read.

	extended – Use 64 bits offset independent of the platform.

	Returns:	Data read from memory.

	
pyvisa.ctwrapper.functions.in_32(library, session, space, offset, extended=False)[source]

	Reads in an 32-bit value from the specified memory space and offset.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	space – Specifies the address space. (Constants.*SPACE*)

	offset – Offset (in bytes) of the address or register from which to read.

	extended – Use 64 bits offset independent of the platform.

	Returns:	Data read from memory.

	
pyvisa.ctwrapper.functions.in_8(library, session, space, offset, extended=False)[source]

	Reads in an 8-bit value from the specified memory space and offset.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	space – Specifies the address space. (Constants.*SPACE*)

	offset – Offset (in bytes) of the address or register from which to read.

	extended – Use 64 bits offset independent of the platform.

	Returns:	Data read from memory.

	
pyvisa.ctwrapper.functions.install_handler(library, session, event_type, handler, user_handle)[source]

	Installs handlers for event callbacks.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	event_type – Logical event identifier.

	handler – Interpreted as a valid reference to a handler to be installed by a client application.

	user_handle – A value specified by an application that can be used for identifying handlers
uniquely for an event type.

	Returns:	a handler descriptor which consists of three elements:
- handler (a python callable)
- user handle (a ctypes object)
- ctypes handler (ctypes object wrapping handler)

	
pyvisa.ctwrapper.functions.lock(library, session, lock_type, timeout, requested_key=None)[source]

	Establishes an access mode to the specified resources.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	lock_type – Specifies the type of lock requested, either Constants.EXCLUSIVE_LOCK or Constants.SHARED_LOCK.

	timeout – Absolute time period (in milliseconds) that a resource waits to get unlocked by the
locking session before returning an error.

	requested_key – This parameter is not used and should be set to VI_NULL when lockType is VI_EXCLUSIVE_LOCK.

	Returns:	access_key that can then be passed to other sessions to share the lock.

	
pyvisa.ctwrapper.functions.map_address(library, session, map_space, map_base, map_size, access=0, suggested=0)[source]

	Maps the specified memory space into the process’s address space.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	map_space – Specifies the address space to map. (Constants.*SPACE*)

	map_base – Offset (in bytes) of the memory to be mapped.

	map_size – Amount of memory to map (in bytes).

	access –

	suggested – If not Constants.NULL (0), the operating system attempts to map the memory to the address
specified in suggested. There is no guarantee, however, that the memory will be mapped to
that address. This operation may map the memory into an address region different from
suggested.

	Returns:	Address in your process space where the memory was mapped.

	
pyvisa.ctwrapper.functions.map_trigger(library, session, trigger_source, trigger_destination, mode)[source]

	Map the specified trigger source line to the specified destination line.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	trigger_source – Source line from which to map. (Constants.TRIG*)

	trigger_destination – Destination line to which to map. (Constants.TRIG*)

	mode –

	
pyvisa.ctwrapper.functions.memory_allocation(library, session, size, extended=False)[source]

	Allocates memory from a resource’s memory region.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	size – Specifies the size of the allocation.

	extended – Use 64 bits offset independent of the platform.

	Returns:	Returns the offset of the allocated memory.

	
pyvisa.ctwrapper.functions.memory_free(library, session, offset, extended=False)[source]

	Frees memory previously allocated using the memory_allocation() operation.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	offset – Offset of the memory to free.

	extended – Use 64 bits offset independent of the platform.

	
pyvisa.ctwrapper.functions.move(library, session, source_space, source_offset, source_width, destination_space, destination_offset, destination_width, length)[source]

	Moves a block of data.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	source_space – Specifies the address space of the source.

	source_offset – Offset of the starting address or register from which to read.

	source_width – Specifies the data width of the source.

	destination_space – Specifies the address space of the destination.

	destination_offset – Offset of the starting address or register to which to write.

	destination_width – Specifies the data width of the destination.

	length – Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

	
pyvisa.ctwrapper.functions.move_asynchronously(library, session, source_space, source_offset, source_width, destination_space, destination_offset, destination_width, length)[source]

	Moves a block of data asynchronously.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	source_space – Specifies the address space of the source.

	source_offset – Offset of the starting address or register from which to read.

	source_width – Specifies the data width of the source.

	destination_space – Specifies the address space of the destination.

	destination_offset – Offset of the starting address or register to which to write.

	destination_width – Specifies the data width of the destination.

	length – Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

	Returns:	Job identifier of this asynchronous move operation.

	
pyvisa.ctwrapper.functions.move_in_16(library, session, space, offset, length, extended=False)[source]

	Moves an 16-bit block of data from the specified address space and offset to local memory.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	space – Specifies the address space. (Constants.*SPACE*)

	offset – Offset (in bytes) of the address or register from which to read.

	length – Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

	extended – Use 64 bits offset independent of the platform.

	Returns:	Data read from bus.

Corresponds to viMoveIn16 functions of the visa library.

	
pyvisa.ctwrapper.functions.move_in_32(library, session, space, offset, length, extended=False)[source]

	Moves an 32-bit block of data from the specified address space and offset to local memory.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	space – Specifies the address space. (Constants.*SPACE*)

	offset – Offset (in bytes) of the address or register from which to read.

	length – Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

	extended – Use 64 bits offset independent of the platform.

	Returns:	Data read from bus.

Corresponds to viMoveIn32 functions of the visa library.

	
pyvisa.ctwrapper.functions.move_in_8(library, session, space, offset, length, extended=False)[source]

	Moves an 8-bit block of data from the specified address space and offset to local memory.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	space – Specifies the address space. (Constants.*SPACE*)

	offset – Offset (in bytes) of the address or register from which to read.

	length – Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

	extended – Use 64 bits offset independent of the platform.

	Returns:	Data read from bus.

Corresponds to viMoveIn8 functions of the visa library.

	
pyvisa.ctwrapper.functions.move_out_16(library, session, space, offset, length, data, extended=False)[source]

	Moves an 16-bit block of data from local memory to the specified address space and offset.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	space – Specifies the address space. (Constants.*SPACE*)

	offset – Offset (in bytes) of the address or register from which to read.

	length – Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

	data – Data to write to bus.

	extended – Use 64 bits offset independent of the platform.

Corresponds to viMoveOut16 functions of the visa library.

	
pyvisa.ctwrapper.functions.move_out_32(library, session, space, offset, length, data, extended=False)[source]

	Moves an 32-bit block of data from local memory to the specified address space and offset.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	space – Specifies the address space. (Constants.*SPACE*)

	offset – Offset (in bytes) of the address or register from which to read.

	length – Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

	data – Data to write to bus.

	extended – Use 64 bits offset independent of the platform.

Corresponds to viMoveOut32 functions of the visa library.

	
pyvisa.ctwrapper.functions.move_out_8(library, session, space, offset, length, data, extended=False)[source]

	Moves an 8-bit block of data from local memory to the specified address space and offset.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	space – Specifies the address space. (Constants.*SPACE*)

	offset – Offset (in bytes) of the address or register from which to read.

	length – Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

	data – Data to write to bus.

	extended – Use 64 bits offset independent of the platform.

Corresponds to viMoveOut8 functions of the visa library.

	
pyvisa.ctwrapper.functions.open(library, session, resource_name, access_mode=0, open_timeout=0)[source]

	Opens a session to the specified resource.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Resource Manager session (should always be a session returned from open_default_resource_manager()).

	resource_name – Unique symbolic name of a resource.

	access_mode – Specifies the mode by which the resource is to be accessed. (Constants.NULL or Constants.*LOCK*)

	open_timeout – Specifies the maximum time period (in milliseconds) that this operation waits
before returning an error.

	Returns:	Unique logical identifier reference to a session.

	
pyvisa.ctwrapper.functions.open_default_resource_manager(library)[source]

	This function returns a session to the Default Resource Manager resource.

	Parameters:	library – the visa library wrapped by ctypes.

	Returns:	Unique logical identifier to a Default Resource Manager session.

	
pyvisa.ctwrapper.functions.out_16(library, session, space, offset, data, extended=False)[source]

	Write in an 16-bit value from the specified memory space and offset.
:param library: the visa library wrapped by ctypes.
:param session: Unique logical identifier to a session.
:param space: Specifies the address space. (Constants.*SPACE*)
:param offset: Offset (in bytes) of the address or register from which to read.
:param data: Data to write to bus.
:param extended: Use 64 bits offset independent of the platform.

Corresponds to viOut16 functions of the visa library.

	
pyvisa.ctwrapper.functions.out_32(library, session, space, offset, data, extended=False)[source]

	Write in an 32-bit value from the specified memory space and offset.
:param library: the visa library wrapped by ctypes.
:param session: Unique logical identifier to a session.
:param space: Specifies the address space. (Constants.*SPACE*)
:param offset: Offset (in bytes) of the address or register from which to read.
:param data: Data to write to bus.
:param extended: Use 64 bits offset independent of the platform.

Corresponds to viOut32 functions of the visa library.

	
pyvisa.ctwrapper.functions.out_8(library, session, space, offset, data, extended=False)[source]

	Write in an 8-bit value from the specified memory space and offset.
:param library: the visa library wrapped by ctypes.
:param session: Unique logical identifier to a session.
:param space: Specifies the address space. (Constants.*SPACE*)
:param offset: Offset (in bytes) of the address or register from which to read.
:param data: Data to write to bus.
:param extended: Use 64 bits offset independent of the platform.

Corresponds to viOut8 functions of the visa library.

	
pyvisa.ctwrapper.functions.parse_resource(library, session, resource_name)[source]

	Parse a resource string to get the interface information.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Resource Manager session (should always be the Default Resource Manager for VISA
returned from open_default_resource_manager()).

	resource_name – Unique symbolic name of a resource.

	Returns:	Resource information with interface type and board number.

	Return type:	:class:ResourceInfo

	
pyvisa.ctwrapper.functions.parse_resource_extended(library, session, resource_name)[source]

	Parse a resource string to get extended interface information.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Resource Manager session (should always be the Default Resource Manager for VISA
returned from open_default_resource_manager()).

	resource_name – Unique symbolic name of a resource.

	Returns:	Resource information.

	Return type:	:class:ResourceInfo

	
pyvisa.ctwrapper.functions.peek_16(library, session, address)[source]

	Read an 16-bit value from the specified address.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	address – Source address to read the value.

	Returns:	Data read from bus.

	Return type:	bytes

	
pyvisa.ctwrapper.functions.peek_32(library, session, address)[source]

	Read an 32-bit value from the specified address.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	address – Source address to read the value.

	Returns:	Data read from bus.

	Return type:	bytes

	
pyvisa.ctwrapper.functions.peek_8(library, session, address)[source]

	Read an 8-bit value from the specified address.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	address – Source address to read the value.

	Returns:	Data read from bus.

	Return type:	bytes

	
pyvisa.ctwrapper.functions.poke_16(library, session, address, data)[source]

	Write an 16-bit value from the specified address.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	address – Source address to read the value.

	data – value to be written to the bus.

	Returns:	Data read from bus.

	
pyvisa.ctwrapper.functions.poke_32(library, session, address, data)[source]

	Write an 32-bit value from the specified address.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	address – Source address to read the value.

	data – value to be written to the bus.

	Returns:	Data read from bus.

	
pyvisa.ctwrapper.functions.poke_8(library, session, address, data)[source]

	Write an 8-bit value from the specified address.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	address – Source address to read the value.

	data – value to be written to the bus.

	Returns:	Data read from bus.

	
pyvisa.ctwrapper.functions.read(library, session, count)[source]

	Reads data from device or interface synchronously.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	count – Number of bytes to be read.

	Returns:	data read.

	Return type:	bytes

	
pyvisa.ctwrapper.functions.read_asynchronously(library, session, count)[source]

	Reads data from device or interface asynchronously.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	count – Number of bytes to be read.

	Returns:	(ctypes buffer with result, jobid)

	
pyvisa.ctwrapper.functions.read_to_file(library, session, filename, count)[source]

	Read data synchronously, and store the transferred data in a file.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	filename – Name of file to which data will be written.

	count – Number of bytes to be read.

	Returns:	Number of bytes actually transferred.

	
pyvisa.ctwrapper.functions.read_stb(library, session)[source]

	Reads a status byte of the service request.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	Returns:	Service request status byte.

	
pyvisa.ctwrapper.functions.set_attribute(library, session, attribute, attribute_state)[source]

	Sets the state of an attribute.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	attribute – Attribute for which the state is to be modified. (Attributes.*)

	attribute_state – The state of the attribute to be set for the specified object.

	
pyvisa.ctwrapper.functions.set_buffer(library, session, mask, size)[source]

	Sets the size for the formatted I/O and/or low-level I/O communication buffer(s).

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	mask – Specifies the type of buffer. (Constants.READ_BUF, .WRITE_BUF, .IO_IN_BUF, .IO_OUT_BUF)

	size – The size to be set for the specified buffer(s).

	
pyvisa.ctwrapper.functions.status_description(library, session, status)[source]

	Returns a user-readable description of the status code passed to the operation.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	status – Status code to interpret.

	Returns:	The user-readable string interpretation of the status code passed to the operation.

	Return type:	unicode (Py2) or str (Py3)

	
pyvisa.ctwrapper.functions.terminate(library, session, degree, job_id)[source]

	Requests a VISA session to terminate normal execution of an operation.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	degree – Constants.NULL

	job_id – Specifies an operation identifier.

	
pyvisa.ctwrapper.functions.uninstall_handler(library, session, event_type, handler, user_handle=None)[source]

	Uninstalls handlers for events.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	event_type – Logical event identifier.

	handler – Interpreted as a valid reference to a handler to be uninstalled by a client application.

	user_handle – A value specified by an application that can be used for identifying handlers
uniquely in a session for an event.

	
pyvisa.ctwrapper.functions.unlock(library, session)[source]

	Relinquishes a lock for the specified resource.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	
pyvisa.ctwrapper.functions.unmap_address(library, session)[source]

	Unmaps memory space previously mapped by map_address().

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	
pyvisa.ctwrapper.functions.unmap_trigger(library, session, trigger_source, trigger_destination)[source]

	Undo a previous map from the specified trigger source line to the specified destination line.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	trigger_source – Source line used in previous map. (Constants.TRIG*)

	trigger_destination – Destination line used in previous map. (Constants.TRIG*)

	
pyvisa.ctwrapper.functions.usb_control_in(library, session, request_type_bitmap_field, request_id, request_value, index, length=0)[source]

	Performs a USB control pipe transfer from the device.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	request_type_bitmap_field – bmRequestType parameter of the setup stage of a USB control transfer.

	request_id – bRequest parameter of the setup stage of a USB control transfer.

	request_value – wValue parameter of the setup stage of a USB control transfer.

	index – wIndex parameter of the setup stage of a USB control transfer.
This is usually the index of the interface or endpoint.

	length – wLength parameter of the setup stage of a USB control transfer.
This value also specifies the size of the data buffer to receive the data from the
optional data stage of the control transfer.

	Returns:	The data buffer that receives the data from the optional data stage of the control transfer.

	Return type:	bytes

	
pyvisa.ctwrapper.functions.usb_control_out(library, session, request_type_bitmap_field, request_id, request_value, index, data=u'')[source]

	Performs a USB control pipe transfer to the device.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	request_type_bitmap_field – bmRequestType parameter of the setup stage of a USB control transfer.

	request_id – bRequest parameter of the setup stage of a USB control transfer.

	request_value – wValue parameter of the setup stage of a USB control transfer.

	index – wIndex parameter of the setup stage of a USB control transfer.
This is usually the index of the interface or endpoint.

	data – The data buffer that sends the data in the optional data stage of the control transfer.

	
pyvisa.ctwrapper.functions.vxi_command_query(library, session, mode, command)[source]

	Sends the device a miscellaneous command or query and/or retrieves the response to a previous query.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	mode – Specifies whether to issue a command and/or retrieve a response. (Constants.VXI_CMD*, .VXI_RESP*)

	command – The miscellaneous command to send.

	Returns:	The response retrieved from the device.

	
pyvisa.ctwrapper.functions.wait_on_event(library, session, in_event_type, timeout)[source]

	Waits for an occurrence of the specified event for a given session.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	in_event_type – Logical identifier of the event(s) to wait for.

	timeout – Absolute time period in time units that the resource shall wait for a specified event to
occur before returning the time elapsed error. The time unit is in milliseconds.

	Returns:	Logical identifier of the event actually received, A handle specifying the unique occurrence of an event.

	
pyvisa.ctwrapper.functions.write(library, session, data)[source]

	Writes data to device or interface synchronously.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	data (str [http://docs.python.org/library/functions.html#str]) – data to be written.

	Returns:	Number of bytes actually transferred.

	
pyvisa.ctwrapper.functions.write_asynchronously(library, session, data)[source]

	Writes data to device or interface asynchronously.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	data – data to be written.

	Returns:	Job ID of this asynchronous write operation.

	
pyvisa.ctwrapper.functions.write_from_file(library, session, filename, count)[source]

	Take data from a file and write it out synchronously.

	Parameters:	
	library – the visa library wrapped by ctypes.

	session – Unique logical identifier to a session.

	filename – Name of file from which data will be read.

	count – Number of bytes to be written.

	Returns:	Number of bytes actually transferred.

 Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyVISA 1.5 documentation

Note

This is a legacy module kept for backwards compatiblity with PyVISA < 1.5
and will be deprecated in future versions of PyVISA.
You are strongly encouraged to switch to the new implementation.

About the legacy visa module

Abstract

PyVISA enables you to control your measurement and test equipment
– digital multimeters, motors, sensors and the like. This
document covers the easy-to- use visa module of the PyVISA
package. It implements control of measurement devices in a
straightforward and convenient way. The design goal is to combine
HTBasic’s simplicity with Python’s modern syntax and powerful set
of libraries. PyVISA doesn’t implement VISA itself. Instead,
PyVISA provides bindings to the VISA library (a DLL or “shared
object” file). This library is usually shipped with your GPIB
interface or software like LabVIEW . Alternatively, you can
download it from your favourite equipment vendor (National
Instruments, Agilent, etc).

It can be downloaded at the PyVISA project page [http://sourceforge.net/projects/pyvisa]. You can report bugs
there, too. Additionally, I’m happy about feedback from people
who’ve given it a try. So far, we have positive reports of various
National Instruments GPIB adapters (connected through PCI, USB, and
RS232), the Agilent 82357A, and SRS lock-in amplifiers, for both
Windows and Linux. However, I’d be really surprised about negative
reports anyway, due to the high abstraction level of PyVISA . As
far as USB instruments are concerned, you must make sure that they
act as ordinary USB devices and not as so-called HDI devices (like
keyboard and mouse).

Contents

	About the legacy visa module
	An example

	Example for serial (RS232) device

	A more complex example

	VISA resource names

An example

Let’s go in medias res and have a look at a simple example:

from pyvisa.legacy import visa

my_instrument = instrument("GPIB::14")
my_instrument.write("*IDN?")
print my_instrument.read()

This example already shows the two main design goals of PyVISA: preferring
simplicity over generality, and doing it the object-oriented way.

Every instrument is represented in the source by an object instance.
In this case, I have a GPIB instrument with instrument number 14, so I
create the instance (i.e. variable) called my_instrument
accordingly:

my_instrument = instrument("GPIB::14")

“GPIB::14” is the instrument’s resource name. See section
VISA resource names for a short explanation of that. Then,
I send the message “*IDN?” to the device, which is the standard GPIB
message for “what are you?” or – in some cases – “what’s on your
display at the moment?”:

my_instrument.write("*IDN?")

Finally, I print the instrument’s answer on the screen:

print(my_instrument.read())

Example for serial (RS232) device

The only RS232 device in my lab is an old Oxford ITC4 temperature
controller, which is connected through COM2 with my computer. The
following code prints its self-identification on the screen:

from pyvisa.legacy import visa

itc4 = visa.instrument("COM2")
itc4.write("V")
print(itc4.read())

Instead of separate write and read operations, you can do both with
one ask() call. Thus, the above source code is equivalent to:

from pyvisa.legacy import visa

itc4 = visa.instrument("COM2")
print(itc4.ask("V"))

It couldn’t be simpler. See section Serial devices for
further information about serial devices.

A more complex example

The following example shows how to use SCPI commands with a Keithley
2000 multimeter in order to measure 10 voltages. After having read
them, the program calculates the average voltage and prints it on the
screen.

I’ll explain the program step-by-step. First, we have to initialise
the instrument:

from pyvisa.legacy import visa

keithley = visa.instrument("GPIB::12")
keithley.write("*rst; status:preset; *cls")

Here, we create the instrument variable keithley, which is used for
all further operations on the instrument. Immediately after it, we
send the initialisation and reset message to the instrument.

The next step is to write all the measurement parameters, in
particular the interval time (500ms) and the number of readings (10)
to the instrument. I won’t explain it in detail. Have a look at an
SCPI and/or Keithley 2000 manual.

interval_in_ms = 500
number_of_readings = 10

keithley.write("status:measurement:enable 512; *sre 1")
keithley.write("sample:count %d" % number_of_readings)
keithley.write("trigger:source bus")
keithley.write("trigger:delay %f" % (interval_in_ms / 1000.0))

keithley.write("trace:points %d" % number_of_readings)
keithley.write("trace:feed sense1; feed:control next")

Okay, now the instrument is prepared to do the measurement. The next
three lines make the instrument waiting for a trigger pulse, trigger
it, and wait until it sends a “service request”:

keithley.write("initiate")
keithley.trigger()
keithley.wait_for_srq()

With sending the service request, the instrument tells us that the
measurement has been finished and that the results are ready for
transmission. We could read them with keithley.ask(“trace:data?”)
however, then we’d get

NDCV-000.0004E+0,NDCV-000.0005E+0,NDCV-000.0004E+0,NDCV-000.0007E+0,
NDCV-000.0000E+0,NDCV-000.0007E+0,NDCV-000.0008E+0,NDCV-000.0004E+0,
NDCV-000.0002E+0,NDCV-000.0005E+0

which we would have to convert to a Python list of numbers.
Fortunately, the ask_for_values() method does this work for us:

voltages = keithley.ask_for_values("trace:data?")
print "Average voltage: ", sum(voltages) / len(voltages)

Finally, we should reset the instrument’s data buffer and SRQ status
register, so that it’s ready for a new run. Again, this is explained
in detail in the instrument’s manual:

keithley.ask("status:measurement?")
keithley.write("trace:clear; feed:control next")

That’s it. 18 lines of lucid code. (Well, SCPI is awkward, but
that’s another story.)

VISA resource names

If you use the function instrument(), you must tell this
function the VISA resource name of the instrument you want to
connect to. Generally, it starts with the bus type, followed by a
double colon ”::”, followed by the number within the bus. For
example,

GPIB::10

denotes the GPIB instrument with the number 10. If you have two GPIB
boards and the instrument is connected to board number 1, you must
write

GPIB1::10

As for the bus, things like “GPIB”, “USB”, “ASRL” (for
serial/parallel interface) are possible. So for connecting to an
instrument at COM2, the resource name is

ASRL2

(Since only one instrument can be connected with one serial interface,
there is no double colon parameter.) However, most VISA systems allow
aliases such as “COM2” or “LPT1”. You may also add your own
aliases.

The resource name is case-insensitive. It doesn’t matter whether you
say “ASRL2” or “asrl2”. For further information, I have to refer
you to a comprehensive VISA description like
http://www.ni.com/pdf/manuals/370423a.pdf.

Footnotes

	[1]	such as the “Measurement and Automation Center” by National Instruments

	[2]	All flavours of binary data streams defined in IEEE488.2 are supported, i.e.
those beginning with <header>#<digit>,
where <header> is optional, and <digit> may also be
“0”.

	[3]	Of course, it’s highly advisable not to have installed another version of
Python on your system before you install Enthought Python.

	[4]	its name depends on the language of your Windows version

 Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyVISA 1.5 documentation

Note

This is a legacy module kept for backwards compatiblity with PyVISA < 1.5.
and will be deprecated in future versions of PyVISA.
You are strongly encouraged to switch to the new implementation.

About the legacy vpp43 module

This module vpp43 is a cautious yet thorough adaption of the VISA
specification for Python. The “textual languages” VISA specification can’t be
implemented as is because Python is rather different from C and Visual Basic,
most notably because of lacking call-by-reference. The second important
difference are strings: In C they are null-terminated whereas Python doesn’t
have this constraint.

The slightly odd name vpp43 for this module derives from the necessity to
make (name)space for the visa module that is supposed to realise the actual
high-level VISA access in Python. The VXIplug&play Systems Alliance [http://www.vxipnp.org/] used to
maintain the VISA specifications, and, although today the IVI foundation [http://ivifoundation.org] is
responsible for this task, the files are still called vpp43.doc etc. So I
thought vpp43 was an appropriate name.

You may wonder why I did choose new names for all routines. I did so because
Python has its own naming guidelines, and because it shows that the routines
had to be adapted. However, I didn’t change them really: Every routine is a
1:1 counterpart. By calling them from C, you could even create a C-based VISA
implementation with the original function signatures and semantics. Moreover,
the new names are mere expansions of the original ones.

Connecting to the VISA shared object

vpp43 tries to find the VISA library for itself. On Windows, this is not a
big problem. visa32.dll must be in your PATH. If it isn’t, move it
there or expand your PATH.

However, on Linux you may need to give the explicit path to the shared object
file. You do so by saying for example:

from pyvisa.legacy import vpp43
vpp43.visa_library.load_library("/path/to/my/libvisa.so.7")

By default, vpp43 looks for the library in
/usr/local/vxipnp/linux/bin/libvisa.so.7. Please pay attention to the fact
that the library must have been successfully loaded before any VISA call is
made.

Alternatively, you can tell PyVISA so by creating a file ~/.pyvisarc. This
has the format of an INI file. For example, if the library is at
/usr/lib/libvisa.so.7, the file .pyvisarc must contain the following:

[Paths]

VISA library: /usr/lib/libvisa.so.7

Please note that [Paths] is treated case-sensitively.

You can define a site-wide configuration file at
/usr/share/pyvisa/.pyvisarc. (It may also be /usr/local/... depending
on the location of your Python.)

Diagnostics

This module can raise a couple of vpp43-specific exceptions.

	Name:	VisaIOError

	Description:	This is an error of the underlying VISA library, as described in
table 3.3.1 in the VISA specification for textual languages [http://www.ivifoundation.org/Downloads/Class%20Specifications/vpp432.doc]. The
exception member error_code contains the (always negative) VISA error
number, as listed in that table.

	Name:	VisaIOWarning

	Description:	This is a warning of the underlying VISA library, as described in
table 3.3.1 in the VISA specification for textual languages [http://www.ivifoundation.org/Downloads/Class%20Specifications/vpp432.doc]. The
exception member completion_code contains the (always positive) VISA
completion number, as listed in that table.

Normally you don’t see these warnings. You can turn them into exceptions
with:

import warnings
warnings.filterwarnings("error")

Consult the description of the warnings package for further
information.

	Name:	TypeError

	Description:	The current implementation of `printf`_, `scanf`_, `sprintf`_,
`sscanf`_, and `queryf`_ have the limitation that only integers, floats,
and strings are allowed as types for the arbitrary arguments.
Additionally, only format string directives for C longs, C doubles, and C
strings are allowed to use, albeit not checked. However, if you pass a
list or a unicode string, you get this exception.

The same exception is raised if an unsupported type is passed as user
handle to `install_handler`_. See there for a list of supported types.

	Name:	UnknownHandler

	Description:	Raised if an unknown handler/user_handle pair is passed to
`uninstall_handler`_. In particular, you must save the user handle
returned by `install_handler`_ in order to pass it to uninstall_handler.

Moreover, this module may pass exceptions generated by ctypes. This may be
because you’ve passed a wrong type to a function, or that the VISA library file
was not found, but it may also mean a bug in vpp43 itself. So if you don’t
see why the exception was raised, contact the current maintainers of PyVISA.

 Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyVISA 1.5 documentation

Legacy API

	legacy.visa functions

	Module classes

	Common properties of instrument variables

	Timeouts

	Chunk length

	Reading binary data

	Termination characters

	Mixing with direct VISA commands

	legacy.vpp43 functions

 Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	PyVISA 1.5 documentation

 	Legacy API

legacy.visa functions

	
get_instruments_list([use_aliases])

	returns a list with all instruments that are known to the local
VISA system. If you’re lucky, these are all instruments connected
with the computer. The boolean use_aliases is True by default,
which means that the more human- friendly aliases like “COM1”
instead of “ASRL1” are returned. With some VISA systems you
can define your own aliases for each device, e.g. “keithley617”
for “GPIB0::15::INSTR”. If use_aliases is False, only
standard resource names are returned.

	
instrument(resource_name[, **keyw])

	returns an instrument variable for the instrument given by
resource_name. It saves you from calling one of the instrument
classes directly by choosing the right one according to the type of
the instrument. So you have one function to open all of your
instruments.

The parameter resource_name may be any valid VISA instrument
resource name, see section VISA resource names. In
particular, you can use a name returned by
get_instruments_list() above.

All further keyword arguments given to this function are passed to
the class constructor of the respective instrument class. See
section General devices for a table with all allowed
keyword arguments and their meanings.

Module classes

General devices

	
class Instrument(resource_name[, **keyw])

	represents an instrument, e.g. a measurement device. It is
independent of a particular bus system, i.e. it may be a GPIB,
serial, USB, or whatever instrument. However, it is not possible
to perform bus-specific operations on instruments created by this
class. For this, have a look at the specialised classes like
GpibInstrument (section Common properties of instrument variables).

The parameter resource_name takes the same syntax as resource
specifiers in VISA. Thus, it begins with the bus system followed
by ”::”, continues with the location of the device within the bus
system, and ends with an optional ”::INSTR”.

Possible keyword arguments are:

	Keyword
	Description

	timeout
	timeout in seconds for all device
operations, see section
Timeouts. Default: 5

	chunk_size
	Length of read data chunks in bytes, see
section Chunk length. Default:
20kB

	values_format
	Data format for lists of read values, see
section Reading binary data.
Default: ascii

	term_char
	termination characters, see section
Termination characters. Default: None

	send_end
	whether to assert END after each write
operation, see section
Termination characters. Default: True

	delay
	delay in seconds after each write
operation, see section
Termination characters. Default: 0

	lock
	whether you want to have exclusive access
to the device. Default: VI_NO_LOCK

For further information about the locking mechanism, see The VISA library
implementation [http://pyvisa.sourceforge.net/vpp43.html].

The class Instrument defines the following methods and attributes:

	
Instrument.write(message)

	writes the string message to the instrument.

	
Instrument.read()

	returns a string sent from the instrument to the computer.

	
Instrument.read_values([format])

	returns a list of decimal values (floats) sent from the instrument to the
computer. See section A more complex example above. The list may
contain only one element or may be empty.

The optional format argument
overrides the setting of values_format. For information about that, see
section Reading binary data.

	
Instrument.ask(message)

	sends the string message to the instrument and returns the answer string from
the instrument.

	
Instrument.ask_for_values(message[, format])

	sends the string message to the instrument and reads the answer as a list of
values, just as read_values() does.

The optional format argument overrides the setting of values_format. For information about that, see
section Reading binary data.

	
Instrument.clear()

	resets the device. This operation is highly bus-dependent. I refer you to the
original VISA documentation, which explains how this is achieved for VXI, GPIB,
serial, etc.

	
Instrument.trigger()

	sends a trigger signal to the instrument.

	
Instrument.read_raw()

	returns a string sent from the instrument to the computer. In contrast to
read(), no termination characters are checked or stripped. You get the
pristine message.

	
Instrument.timeout

	The timeout in seconds for each I/O operation. See section Timeouts
for further information.

	
Instrument.term_chars

	The termination characters for each read and write operation. See section
Termination characters for further information.

	
Instrument.send_end

	Whether or not to assert EOI (or something equivalent, depending on the
interface type) after each write operation. See section Termination characters
for further information.

	
Instrument.delay

	Time in seconds to wait after each write operation. See section
Termination characters for further information.

	
Instrument.values_format

	The format for multi-value data sent from the instrument to the computer. See
section Reading binary data for further information.

GPIB devices

	
class GpibInstrument(gpib_identifier[, board_number[, **keyw]])

	represents a GPIB instrument. If gpib_identifier is a string, it is
interpreted as a VISA resource name (section VISA resource names).
If it is a number, it denotes the device number at the GPIB bus.

The optional board_number defaults to zero. If you have more that one GPIB bus system
attached to the computer, you can select the bus with this parameter.

The keyword arguments are interpreted the same as with the class
Instrument.

Note

Since this class is derived from the class Instrument, please refer to
section General devices for the basic operations.
GpibInstrument can do everything that Instrument can do, so
it simply extends the original class with GPIB-specific operations.

The class GpibInstrument defines the following methods:

	
GpibInstrument.wait_for_srq([timeout])

	waits for a serial request (SRQ) coming from the instrument. Note that this
method is not ended when another instrument signals an SRQ, only this
instrument.

The timeout argument, given in seconds, denotes the maximal
waiting time. The default value is 25 (seconds). If you pass None for the
timeout, this method waits forever if no SRQ arrives.

	
class Gpib([board_number])

	represents a GPIB board. Although most setups have at most one GPIB interface
card or USB-GPIB device (with board number 0), theoretically you may have more.
Be that as it may, for board-level operations, i.e. operations that affect the
whole bus with all connected devices, you must create an instance of this
class.

The optional GPIB board number board_number defaults to 0.

The class Gpib defines the following method:

	
Gpib.send_ifc()

	pulses the interface clear line (IFC) for at least 0.1 seconds.

Note

You needn’t store the board instance in a variable. Instead, you may send an
IFC signal just by saying Gpib().send_ifc().

Serial devices

Please note that “serial instrument” means only RS232 and parallel port
instruments, i.e. everything attached to COM and LPT. In particular, it does
not include USB instruments. For USB you have to use Instrument
instead.

	
class SerialInstrument(resource_name[, **keyw])

	represents a serial instrument. resource_name is the VISA resource name, see
section VISA resource names. The general keyword arguments are
interpreted the same as with the class Instrument. The only
difference is the default value for term_chars: For serial instruments,
CR (carriage return) is used to terminate readings and writings.

Note

Since this class is derived from the class Instrument, please refer to
section General devices for all operations.
SerialInstrument can do everything that Instrument can do.

The class SerialInstrument defines the following additional properties.
Note that all properties can also be given as keyword arguments when calling
the class constructor or instrument().

	
SerialInstrument.baud_rate

	The communication speed in baud. The default value is 9600.

	
SerialInstrument.data_bits

	Number of data bits contained in each frame. Its value must be from 5 to 8.
The default is 8.

	
SerialInstrument.stop_bits

	Number of stop bits contained in each frame. Possible values are 1, 1.5, and
2. The default is 1.

	
SerialInstrument.parity

	The parity used with every frame transmitted and received. Possible values
are:

	Value
	Description

	no_parity
	no parity bit is used

	odd_parity
	the parity bit causes odd parity

	even_parity
	the parity bit causes even parity

	mark_parity
	the parity bit exists but it’s always 1

	space_parity
	the parity bit exists but it’s always 0

The default value is no_parity.

	
SerialInstrument.end_input

	This determines the method used to terminate read operations. Possible values
are:

	Value
	Description

	last_bit_end_input
	read will terminate as soon as a character
arrives with its last data bit set

	term_chars_end_input
	read will terminate as soon as the last
character of term_chars is received

The default value is term_chars_end_input.

Common properties of instrument variables

Timeouts

Very most VISA I/O operations may be performed with a timeout. If a timeout is
set, every operation that takes longer than the timeout is aborted and an
exception is raised. Timeouts are given per instrument.

For all PyVISA objects, a timeout is set with

my_device.timeout = 25

Here, my_device may be a device, an interface or whatever, and its timeout is
set to 25 seconds. Floating-point values are allowed. If you set it to zero,
all operations must succeed instantaneously. You must not set it to None.
Instead, if you want to remove the timeout, just say

del my_device.timeout

Now every operation of the resource takes as long as it takes, even
indefinitely if necessary.

The default timeout is 5 seconds, but you can change it when creating the device object:

my_instrument = instrument("ASRL1", timeout = 8)

This creates the object variable my_instrument and sets its timeout to 8
seconds. In this context, a timeout value of None is allowed, which
removes the timeout for this device.

Note that your local VISA library may round up this value heavily. I experienced this effect with my National
Instruments VISA implementation, which rounds off to 0, 1, 3 and 10 seconds.

Chunk length

If you read data from a device, you must store it somewhere. Unfortunately,
PyVISA must make space for the data before it starts reading, which means
that it must know how much data the device will send. However, it doesn’t know
a priori.

Therefore, PyVISA reads from the device in chunks. Each chunk is
20 kilobytes long by default. If there’s still data to be read, PyVISA repeats
the procedure and eventually concatenates the results and returns it to you.
Those 20 kilobytes are large enough so that mostly one read cycle is
sufficient.

The whole thing happens automatically, as you can see. Normally
you needn’t worry about it. However, some devices don’t like to send data in
chunks. So if you have trouble with a certain device and expect data lengths
larger than the default chunk length, you should increase its value by saying
e.g.

my_instrument.chunk_size = 102400

This example sets it to 100 kilobytes.

Reading binary data

Some instruments allow for sending the measured data in binary form. This has
the advantage that the data transfer is much smaller and takes less time.
PyVISA currently supports three forms of transfers:

	ascii

	This is the default mode. It assumes a normal string with comma- or
whitespace-separated values.

	single

	The values are expected as a binary sequence of IEEE floating point values with
single precision (i.e. four bytes each).

	double

	The same as single, but with values of double precision (eight bytes each).

You can set the form of transfer with the property values_format, either
with the generation of the object,

my_instrument = instrument("GPIB::12", values_format = single)

or later by setting the property directly:

my_instrument.values_format = single

Setting this option affects the methods read_values() and
ask_for_values(). In particular, you must assure separately that the
device actually sends in this format. In some cases it may be necessary to
set the byte order, also known as endianness. PyVISA assumes little-endian
as default. Some instruments call this “swapped” byte order. However, there
is also big-endian byte order. In this case you have to append |
big_endian to your values format:

my_instrument = instrument("GPIB::12", values_format = single | big_endian)

Example

In order to demonstrate how easy reading binary data can be, remember our
example from section A more complex example. You just have to append
the lines

keithley.write("format:data sreal")
keithley.values_format = single

to the initialisation commands, and all measurement data will be transmitted as
binary. You will only notice the increased speed, as PyVISA converts it into
the same list of values as before.

Termination characters

Somehow the computer must detect when the device is finished with sending a
message. It does so by using different methods, depending on the bus system.
In most cases you don’t need to worry about termination characters because the
defaults are very good. However, if you have trouble, you may influence
termination characters with PyVISA.

Termination characters may be one
character or a sequence of characters. Whenever this character or sequence
occurs in the input stream, the read operation is terminated and the read
message is given to the calling application. The next read operation continues
with the input stream immediately after the last termination sequence. In
PyVISA, the termination characters are stripped off the message before it is
given to you.

You may set termination characters for each instrument, e.g.

my_instrument.term_chars = CR

Alternatively you can give it when creating your instrument object:

my_instrument = instrument("GPIB::10", term_chars = CR)

The default value depends on the bus system. Generally, the sequence is empty,
in particular for GPIB . For RS232 it’s CR .

Well, the real default is not “” (the empty string) but None.
There is a subtle difference:
“” really means the termination characters are not used at all, neither for
read nor for write operations. In contrast, None means that every write
operation is implicitly terminated with CR+LF . This works well with most
instruments.

All CRs and LFs are stripped from the end of a read string, no
matter how term_chars is set.

The termination characters sequence is an
ordinary string. CR and LF are just string constants that allow
readable access to “\r” and “\n”. Therefore, instead of CR+LF, you
can also write “\r\n”, whichever you like more.

delay and send_end

There are two further options related to message termination, namely
send_end and delay. send_end is a boolean. If it’s True (the
default), the EOI line is asserted after each write operation, signalling the
end of the operation. EOI is GPIB-specific but similar action is taken for
other interfaces.

The argument delay is the time in seconds to wait after
each write operation. So you could write:

my_instrument = instrument("GPIB::10", send_end = False, delay = 1.2)

This will set the delay to 1.2 seconds, and the EOI line is omitted. By the
way, omitting EOI is not recommended, so if you omit it nevertheless, you
should know what you’re doing.

Mixing with direct VISA commands

You can mix the high-level object-oriented approach described in this document
with middle-level VISA function calls in module vpp43 as described in
The VISA library implementation [http://pyvisa.sourceforge.net/vpp43.html]
which is also part of the PyVISA package. By doing so, you have full control
of your devices. I recommend to import the VISA functions with:

from pyvisa import vpp43

Then you can use them with vpp43.function_name(...).

The VISA functions need to know what session you are referring to. PyVISA opens exactly one
session for each instrument or interface and stores its session handle in the
instance attribute vi. For example, these two lines are equivalent:

my_instrument.clear()
vpp43.clear(my_instrument.vi)

In case you need the session handle for the default resource manager, it’s
stored in resource_manager.session:

from visa import *
from pyvisa import vpp43
my_instrument_handle = vpp43.open(resource_manager.session, "GPIB::14",
 VI_EXCLUSIVE_LOCK)

Setting the VISA library in the program

You can also set the path to your VISA library at the beginning of your
program. Just start the program with

from pyvisa.vpp43 import visa_library
visa_library.load_library("/usr/lib/libvisa.so.7")
from visa import *
...

Keep in mind that the backslashes of Windows paths must be properly escaped, or
the path must be preceeded by r:

from pyvisa.vpp43 import visa_library
visa_library.load_library(r"c:\WINNT\system32\visa32.dll")
from visa import *
...

 Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	PyVISA 1.5 documentation

 	Legacy API

legacy.vpp43 functions

Please note that all descriptions given in this reference serve mostly as
reminders. For real descriptions consult a VISA specification [http://www.ivifoundation.org/Downloads/Class%20Specifications/vpp43.doc] or NI-VISA
Programmer Reference Manual [http://digital.ni.com/manuals.nsf/websearch/87E52268CF9ACCEE86256D0F006E860D]. However, whenever there are PyVISA-specific
semantics, they are listed here, too.

assert_interrupt_signal

Asserts the specified device interrupt or signal.

	Call:	assert_interrupt_signal(vi, mode, status_id)

	VISA name:	viAssertIntrSignal

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	mode : integer

	This specifies how to assert the interrupt.

	status_id : integer

	This is the status value to be presented during an interrupt
acknowledge cycle.

	Return values:	None.

assert_trigger

Assert software or hardware trigger.

	Call:	assert_trigger(vi, protocol)

	VISA name:	viAssertTrigger

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	protocol : integer

	Trigger protocol to use during assertion. Valid values are:
VI_TRIG_PROT_DEFAULT, VI_TRIG_PROT_ON, VI_TRIG_PROT_OFF,
and VI_TRIG_PROT_SYNC.

	Return values:	None.

assert_utility_signal

Asserts the specified utility bus signal.

	Call:	assert_utility_signal(vi, line)

	VISA name:	viAssertUtilSignal

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	line : integer

	Specifies the utility bus signal to assert.

	Return values:	None.

buffer_read

Similar to read, except that the operation uses the formatted I/O read
buffer for holding data read from the device.

	Call:	buffer = buffer_read(vi, count)

	VISA name:	viBufRead

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	count : integer

	Maximal number of bytes to be read.

	Return values:	
	buffer : string

	The buffer with the received data from device.

buffer_write

Similar to write, except the data is written to the formatted I/O write
buffer rather than directly to the device.

	Call:	return_count = buffer_write(vi, buffer)

	VISA name:	viBufWrite

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	buffer : string

	The data block to be sent to device.

	Return values:	
	return_count : integer

	The number of bytes actually transferred.

clear

Clear a device.

	Call:	clear(vi)

	VISA name:	viClear

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	Return values:	None.

close

Close the specified session, event, or find list.

	Call:	close(vi)

	VISA name:	viClose

	Parameters:	
	vi : integer, ViEvent, or ViFindList

	Unique logical identifier to a session, event, or find list.

	Return values:	None.

disable_event

Disable notification of an event type by the specified mechanisms.

	Call:	disable_event(vi, event_type, mechanism)

	VISA name:	viDisableEvent

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	event_type : integer

	Logical event identifier.

	mechanism : integer

	Specifies event handling mechanisms to be disabled. The queuing
mechanism is disabled by specifying VI_QUEUE, and the callback
mechanism is disabled by specifying VI_HNDLR or
VI_SUSPEND_HNDLR. It is possible to disable both mechanisms
simultaneously by specifying VI_ALL_MECH.

	Return values:	None.

discard_events

Discard event occurrences for specified event types and mechanisms in a
session.

	Call:	discard_events(vi, event_type, mechanism)

	VISA name:	viDiscardEvents

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	event_type : integer

	Logical event identifier.

	mechanism : integer

	Specifies the mechanisms for which the events are to be discarded. The
VI_QUEUE value is specified for the queuing mechanism and the
VI_SUSPEND_HNDLR value is specified for the pending events in the
callback mechanism. It is possible to specify both mechanisms
simultaneously by specifying VI_ALL_MECH.

	Return values:	None.

enable_event

Enable notification of a specified event.

	Call:	enable_event(vi, event_type, mechanism, context)

	VISA name:	viEnableEvent

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	event_type : integer

	Logical event identifier.

	mechanism : integer

	Specifies event handling mechanisms to be enabled. The queuing
mechanism is enabled by specifying VI_QUEUE, and the callback
mechanism is enabled by specifying VI_HNDLR or
VI_SUSPEND_HNDLR. It is possible to enable both mechanisms
simultaneously by specifying bit-wise “or” of VI_QUEUE and one of
the two mode values for the callback mechanism.

	context : integer : optional

	According to the VISA specification, this must be Vi_NULL always.
(This is also the default value, of course.)

	Return values:	None.

find_next

	Call:	instrument_description = find_next(find_list)

	VISA name:	viFindNext

	Parameters:	
	find_list : ViFindList

	Describes a find list. This parameter must be created by
find_resources.

	Return values:	
	instrument_description : string

	Returns a string identifying the location of a device. Strings can then
be passed to open to establish a session to the given device.

find_resources

	Call:	find_list, return_counter, instrument_description =
find_resources(session, regular_expression)

	VISA name:	viFindRsrc

	Parameters:	
	session : integer

	Resource Manager session (should always be the Default Resource Manager
for VISA returned from open_default_resource_manager).

	regular_expression : integer

	This is a regular expression followed by an optional logical
expression.

	Return values:	
	find_list : ViFindList

	Returns a handle identifying this search session. This handle will be
used as an input in find_next.

	return_counter : integer

	Number of matches.

	instrument_description : string

	Returns a string identifying the location of a device. Strings can then
be passed to open to establish a session to the given device.

flush

Manually flush the specified buffers associated with formatted I/O operations
and/or serial communication.

	Call:	flush(vi, mask)

	VISA name:	viFlush

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	mask : integer

	Specifies the action to be taken with flushing the buffer.

	Return values:	None.

get_attribute

Retrieve the state of an attribute.

	Call:	attribute_state = get_attribute(vi, attribute)

	VISA name:	viGetAttribute

	Parameters:	
	vi : integer, ViEvent, or ViFindList

	Unique logical identifier to a session.

	attribute : integer

	Session, event, or find list attribute for which the state query is
made.

	Return values:	
	attribute_state : integer, string, or list of integers

	The state of the queried attribute for a specified resource.

gpib_command

Write GPIB command bytes on the bus.

	Call:	return_count = gpib_command(vi, buffer)

	VISA name:	viGpibCommand

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	buffer : string

	Buffer containing valid GPIB commands.

	Return values:	
	return_count : integer

	Number of bytes actually transferred.

gpib_control_atn

Controls the state of the GPIB ATN interface line, and optionally the active
controller state of the local interface board.

	Call:	gpib_control_atn(vi, mode)

	VISA name:	viGpibControlATN

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	mode : integer

	Specifies the state of the ATN line and optionally the local active
controller state. See the Description section for actual values.

	Return values:	None.

gpib_control_ren

Controls the state of the GPIB REN interface line, and optionally the
remote/local state of the device.

	Call:	gpib_control_ren(vi, mode)

	VISA name:	viGpibControlREN

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	mode : integer

	Specifies the state of the REN line and optionally the device
remote/local state. See the Description section for actual values.

	Return values:	None.

gpib_pass_control

Tell the GPIB device at the specified address to become controller in charge
(CIC).

	Call:	gpib_pass_control(vi, primary_address, secondary_address)

	VISA name:	viGpibPassControl

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	primary_address : integer

	Primary address of the GPIB device to which you want to pass control.

	secondary_address : integer

	Secondary address of the targeted GPIB device. If the targeted device
does not have a secondary address, this parameter should contain the
value VI_NO_SEC_ADDR.

	Return values:	None.

gpib_send_ifc

Pulse the interface clear line (IFC) for at least 100 microseconds.

	Call:	gpib_send_ifc(vi)

	VISA name:	viGpibSendIFC

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	Return values:	None.

in_8, in_16, in_32

Read in an 8-bit, 16-bit, or 32-bit value from the specified memory space and
offset.

	Call:	
value_8 = in_8(vi, space, offset)

value_16 = in_16(vi, space, offset)

value_32 = in_32(vi, space, offset)

	VISA name:	viIn8, viIn16, viIn32

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	space : integer

	Specifies the address space.

	offset : integer

	Offset in bytes of the address or register from which to read.

	Return values:	
	value_8, value_16, value_32 : integer

	Data read from bus (8 bits for in_8, 16 bits for in_16, and 32
bits for in_32).

install_handler

Install handlers for event callbacks. A handler must have the following
signature:

def event_handler(vi, event_type, context, user_handle):
 ...

Its parameters mean the following:

	vi : integer

	Unique logical identifier to a session.

	event_type : ViEvent

	Logical event identifier. With event_type.value you get its value as
an integer.

	context : ViEvent

	A handle specifying the unique occurrence of an event.

	user_handle : ctypes pointer type

	A pointer to the user handle in ctypes form. See below at “Return
values” for how to use it, however, you have to substitute
user_handle.contents for converted_user_handle in the explanation.

	Call:	converted_user_handle = install_handler(vi, event_type, handler,
user_handle)

	VISA name:	viInstallHandler

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	event_type : integer

	Logical event identifier.

	handler : callable

	Interpreted as a valid reference to a handler to be installed by a
client application.

	user_handle : None, float, integer, string, or list of floats or integers : optional

	A value specified by an application that can be used for identifying
handlers uniquely for an event type. It defaults to None.

	Return values:	
	converted_user_handle : ctypes type

	An object representing the user_handle. Use it to communicate with
your handler. If your user_handle was a list, you get its elements as
usual with converted_user_handle[index]. You can even convert it
to a list with list(converted_user_handle) (however, this yields a
copy).

For strings, use converted_user_handle.value if it’s supposed to be
interpreted as a null-terminated string, or
converted_user_handle.raw if you want to see all bytes. You can
also write to both expressions, however, slicing is only possible for
reading.

For simple types, you can say converted_user_handle.value (read and
write).

Attention: You must assure that you never write values to
converted_user_data which are longer (in bytes) than the initial
values. So be careful not to write a string longer than the original
one, nor a longer list. You’d be alerted by exceptions, though.

lock

Establish an access mode to the specified resource.

	Call:	access_key = lock(vi, lock_type, timeout, requested_key)

	VISA name:	viLock

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	lock_type : integer

	Specifies the type of lock requested, which can be either
VI_EXCLUSIVE_LOCK or VI_SHARED_LOCK.

	timeout : integer

	Absolute time period in milliseconds that a resource waits to get
unlocked by the locking session before returning this operation with an
error.

	requested_key : ctypes string : optional

	This parameter is not used if lock_type is VI_EXCLUSIVE_LOCK
(exclusive locks). When trying to lock the resource as
VI_SHARED_LOCK (shared), you can either omit it so that VISA
generates an access_key for the session, or you can suggest an
access_key to use for the shared lock.

	Return values:	
	access_key : ctypes string : optional

	This value is None if lock_type is VI_EXCLUSIVE_LOCK
(exclusive locks). When trying to lock the resource as
VI_SHARED_LOCK (shared), the function returns a unique access key
for the lock if the operation succeeds. This access_key can then be
passed to other sessions to share the lock.

map_address

Map the specified memory space into the process’s address space.

	Call:	address = map_address(vi, map_space, map_base, map_size, access,
suggested)

	VISA name:	viMapAddress

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	map_space : integer

	Specifies the address space to map.

	map_base : ViBusAddress

	Offset in bytes of the memory to be mapped.

	map_size : integer

	Amount of memory to map in bytes.

	access : integer : optional

	Must be VI_FALSE.

	suggested : integer : optional

	If not VI_NULL (the default), the operating system attempts to map
the memory to the address specified in suggested. There is no
guarantee, however, that the memory will be mapped to that
address. This operation may map the memory into an address region
different from suggested.

	Return values:	
	address : ViAddr

	Address in your process space where the memory was mapped.

map_trigger

Map the specified trigger source line to the specified destination line.

	Call:	map_trigger(vi, trigger_source, trigger_destination, mode)

	VISA name:	viMapTrigger

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	trigger_source : integer

	Source line from which to map.

	trigger_destination : integer

	Destination line to which to map.

	mode : integer

	Specifies the trigger mapping mode. This should always be VI_NULL.

	Return values:	None.

memory_allocation

Allocate memory from a device’s memory region.

	Call:	memory_allocation(vi, size)

	VISA name:	viMemAlloc

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	size : integer

	Specifies the size of the allocation.

	Return values:	
	offset : ViBusAddress

	Returns the offset of the allocated device memory.

memory_free

Free memory previously allocated using memory_allocation.

	Call:	memory_free(vi, offset)

	VISA name:	viMemFree

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	offset : ViBusAddress

	Specifies the memory previously allocated with memory_allocation.

	Return values:	None.

move

Move a block of data.

	Call:	move(vi, source_space, source_offset, source_width, destination_space,
destination_offset, destination_width, length)

	VISA name:	viMove

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	source_space : integer

	Specifies the address space of the source.

	source_offset : integer

	Offset in bytes of the starting address or register from which to
read.

	source_width : integer

	Specifies the data width of the source.

	destination_space : integer

	Specifies the address space of the destination.

	destination_offset : integer

	Offset in bytes of the starting address or register to which to write.

	destination_width : integer

	Specifies the data width of the destination.

	length : integer

	Number of elements to transfer, where the data width of the elements to
transfer is identical to source data width.

	Return values:	None.

move_asynchronously

Move a block of data asynchronously.

	Call:	job_id = move_asynchronously(vi, source_space, source_offset,
source_width, destination_space, destination_offset, destination_width,
length)

	VISA name:	viMoveAsync

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	source_space : integer

	Specifies the address space of the source.

	source_offset : integer

	Offset in bytes of the starting address or register from which to
read.

	source_width : integer

	Specifies the data width of the source.

	destination_space : integer

	Specifies the address space of the destination.

	destination_offset : integer

	Offset in bytes of the starting address or register to which to write.

	destination_width : integer

	Specifies the data width of the destination.

	length : integer

	Number of elements to transfer, where the data width of the elements to
transfer is identical to source data width.

	Return values:	
	job_id : ViJobId

	The job identifier of this asynchronous move operation. Each time an
asynchronous move operation is called, it is assigned a unique job
identifier.

move_in_8, move_in_16, move_in_32

Move a block of data from the specified address space and offset to local
memory in increments of 8, 16, or 32 bits.

	Call:	
buffer_8 = move_in_8(vi, space, offset, length)

buffer_16 = move_in_16(vi, space, offset, length)

buffer_32 = move_in_32(vi, space, offset, length)

	VISA name:	viMoveIn8, viMoveIn16, viMoveIn32

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	space : integer

	Specifies the address space.

	offset : ViBusAddress

	Offset in bytes of the starting address or register from which to
read.

	length : integer

	Number of elements to transfer, where the data width of the elements to
transfer is identical to data width (8, 16, or 32 bits).

	Return values:	
	buffer_8, buffer_16, buffer_32 : list of integers

	Data read from bus as a Python list of values.

move_out_8, move_out_16, move_out_32

Move a block of data from local memory to the specified address space and
offset in increments of 8, 16, or 32 bits.

	Call:	
move_out_8(vi, space, offset, length, buffer_8)

move_out_16(vi, space, offset, length, buffer_16)

move_out_32(vi, space, offset, length, buffer_32)

	VISA name:	viMoveOut8, viMoveOut16, viMoveOut32

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	space : integer

	Specifies the address space.

	offset : ViBusAddress

	Offset in bytes of the starting address or register from which to
write.

	length : integer

	Number of elements to transfer, where the data width of the elements to
transfer is identical to data width (8, 16, or 32 bits).

	buffer_8, buffer_16, buffer_32 : sequence of integers

	Data to write to bus. This may be a list or a tuple, however in any
case in must contain integers.

	Return values:	None.

open

Open a session to the specified device.

	Call:	vi = open(session, resource_name, access_mode, open_timeout)

	VISA name:	viOpen

	Parameters:	
	session : integer

	Resource Manager session (should always be the Default Resource Manager
for VISA returned from open_default_resource_manager).

	resource_name : string

	Unique symbolic name of a resource.

	access_mode : integer : optional

	Defaults to VI_NO_LOCK. Specifies the modes by which the resource
is to be accessed. The value VI_EXCLUSIVE_LOCK is used to acquire
an exclusive lock immediately upon opening a session; if a lock cannot
be acquired, the session is closed and an error is returned. The value
VI_LOAD_CONFIG is used to configure attributes to values specified
by some external configuration utility; if this value is not used, the
session uses the default values provided by this
specification. Multiple access modes can be used simultaneously by
specifying a “bitwise OR” of the above values.

	open_timeout : integer : optional

	If the access_mode parameter requests a lock, then this parameter
specifies the absolute time period in milliseconds that the resource
waits to get unlocked before this operation returns an error;
otherwise, this parameter is ignored. Defaults to
VI_TMO_IMMEDIATE.

	Return values:	
	vi : integer

	Unique logical identifier reference to a session.

open_default_resource_manager

Return a session to the Default Resource Manager resource.

	Call:	session = open_default_resource_manager()

	VISA name:	viOpenDefaultRM

	Parameters:	None.

	Return values:	
	session : integer

	Unique logical identifier to a Default Resource Manager session.

get_default_resource_manager

This is a deprecated alias for open_default_resource_manager.

out_8, out_16, out_32

	Call:	
out_8(vi, space, offset, value_8)

out_16(vi, space, offset, value_16)

out_32(vi, space, offset, value_32)

	VISA name:	viOut8, viOut16, viOut32

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	space : integer

	Specifies the address space.

	offset : integer

	Offset in bytes of the address or register to which to write.

	value_8, value_16, value_32: integer

	Data to write to bus (8 bits for out_8, 16 bits for out_16, and 32 bits
for out_32).

	Return values:	None.

parse_resource

Parse a resource string to get the interface information.

	Call:	interface_type, interface_board_number = parse_resource(session,
resource_name)

	VISA name:	viParseRsrc

	Parameters:	
	session : integer

	Resource Manager session (should always be the Default Resource Manager
for VISA returned from open_default_resource_manager).

	resource_name : string

	Unique symbolic name of a resource.

	Return values:	
	interface_type : integer

	Interface type of the given resource string.

	interface_board_number : integer

	Board number of the interface of the given resource string.

parse_resource_extended

Parse a resource string to get extended interface information.

Attention: Calling this function may raise an AttributeError because
some older VISA implementation don’t have the function viParseRsrcEx.

	Call:	interface_type, interface_board_number, resource_class,
unaliased_expanded_resource_name, alias_if_exists =
parse_resource_extended(session, resource_name)

	VISA name:	viParseRsrcEx

	Parameters:	
	session : integer

	Resource Manager session (should always be the Default Resource Manager
for VISA returned from open_default_resource_manager).

	resource_name : string

	Unique symbolic name of a resource.

	Return values:	
	interface_type : integer

	Interface type of the given resource string.

	interface_board_number : integer

	Board number of the interface of the given resource string.

	resource_class : string

	Specifies the resource class (for example “INSTR”) of the given
resource string.

	unaliased_expanded_resource_name : string

	This is the expanded version of the given resource string. The format
should be similar to the VISA-defined canonical resource name.

	alias_if_exists : string

	Specifies the user-defined alias for the given resource string, if a
VISA implementation allows aliases and an alias exists for the given
resource string. If not, this is None.

peek_8, peek_16, peek_32

Read an 8-bit, 16-bit, or 32-bit value from the specified address.

	Call:	
value_8 = peek_8(vi, address)

value_16 = peek_16(vi, address)

value_32 = peek_32(vi, address)

	VISA name:	viPeek8, viPeek16, viPeek32

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	address : ViAddr

	Specifies the source address to read the value.

	Return values:	
	value_8, value_16, value_32 : integer

	Data read from bus (8 bits for peek_8, 16 bits for peek_16, and 32 bits
for peek_32).

poke_8, poke_16, poke_32

Write an 8-bit, 16-bit, or 32-bit value to the specified address.

	Call:	
poke_8(vi, address, value_8)

poke_16(vi, address, value_16)

poke_32(vi, address, value_32)

	VISA name:	vipoke_8

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	address : integer

	Specifies the destination address to store the value.

	value_8, value_16, value_32 : integer

	Data to write to bus (8 bits for poke_8, 16 bits for poke_16, and 32
bits for poke_32).

	Return values:	None.

printf

Convert, format, and send the parameters ... to the device as specified by
the format string.

Warning

The current implementation only supports the following C data types:
long, double and char* (strings). Thus, you can only use these
three data types in format strings for printf, scanf and the like.

	Call:	printf(vi, write_format, ...)

	VISA name:	viPrintf

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	write_format : string

	String describing the format for arguments.

	... : integers, floats, or strings

	Arguments sent to the device according to write_format.

	Return values:	None.

queryf

Perform a formatted write and read through a single operation invocation.

Warning

The current implementation only supports the following C data types:
long, double and char* (strings). Thus, you can only use these
three data types in format strings for printf, scanf and the like.

	Call:	value1, value2, ... = queryf(vi, write_format, read_format, (...), ...,
maximal_string_length = 1024)

	VISA name:	viQueryf

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	write_format : string

	String describing the format for arguments.

	read_format : string

	String describing the format for arguments.

	(...) : tuple of integers, floats, or strings

	Arguments sent to the device according to write_format. May be
None.

	... : integers, floats, or strings

	Arguments to be read from the device according to read_format. It’s
totally insignificant which values they have, they serve just as a
cheap way to determine what types are to be expected. So actually this
argument list shouldn’t be necessary, but with the current
implementation, it is, sorry.

These arguments may be (however needn’t be) the same names used for
storing the result values. Alternatively, you can give literals.

	maximal_string_length : integer : keyword argument

	The maximal length assumed for string result arguments. Note that
string results must never exceed this length. It defaults to 1024.

	Return values:	
	value1, value2, ... : integers, floats, or strings

	Arguments read from the device according to read_format. Of course,
this must be the same sequence (as far as data types are concerned) as
the given argument list ... above.

read

Read data from device synchronously.

	Call:	buffer = read(vi, count)

	VISA name:	viRead

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	count : integer

	Maximal number of bytes to be read.

	Return values:	
	buffer : string

	Represents the buffer with the received data from device.

read_asynchronously

Read data from device asynchronously.

	Call:	buffer, job_id = read_asynchronously(vi, count)

	VISA name:	viReadAsync

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	count : integer

	Maximal number of bytes to be read.

	Return values:	
	buffer : ctypes string buffer

	Represents the buffer with the data received from device. It’s not a
native Python data type because it’s filled in the background
(i.e. asynchronously). After you assured that the reading is finished,
you get its value with:

buffer.raw[:return_count]

You get return_count via the attribute VI_ATTR_RET_COUNT. See
the VISA reference [http://digital.ni.com/manuals.nsf/websearch/87E52268CF9ACCEE86256D0F006E860D] for further information.

	job_id : ViJobId

	Represents the location of a variable that will be set to the job
identifier of this asynchronous read operation.

read_stb

Read a status byte of the service request.

	Call:	status = read_stb(vi)

	VISA name:	viReadSTB

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	Return values:	
	status : integer

	Service request status byte.

read_to_file

Read data synchronously, and store the transferred data in a file.

	Call:	return_count = read_to_file(vi, filename, count)

	VISA name:	viReadToFile

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	file_name : string

	Name of file to which data will be written.

	count : integer

	Maximal number of bytes to be read.

	Return values:	
	return_count : integer

	Number of bytes actually transferred.

scanf

Read, convert, and format data using the format specifier. Store the formatted
data in the given optional parameters.

Warning

The current implementation only supports the following C data types:
long, double and char* (strings). Thus, you can only use these
three data types in format strings for printf, scanf and the like.

	Call:	value1, value2, ... = scanf(vi, read_format, ..., maximal_string_length
= 1024)

	VISA name:	viScanf

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	read_format : string

	String describing the format for arguments.

	... : integers, floats, or strings

	Arguments to be read from the device according to read_format. It’s
totally insignificant which values they have, they serve just as a
cheap way to determine what types are to be expected. So actually this
argument list shouldn’t be necessary, but with the current
implementation, it is, sorry.

These arguments may be (however needn’t be) the same names used for
storing the result values. Alternatively, you can give literals.

	maximal_string_length : integer : keyword argument

	The maximal length assumed for string result arguments. Note that
string results must never exceed this length. It defaults to 1024.

	Return values:	
	value1, value2, ... : integers, floats, or strings

	Arguments read from the device according to read_format. Of course,
this must be the same sequence (as far as data types are concerned) as
the given argument list ... above.

set_attribute

Set the state of an attribute.

	Call:	set_attribute(vi, attribute, attribute_state)

	VISA name:	viSetAttribute

	Parameters:	
	vi : integer, ViEvent, or ViFindList

	Unique logical identifier to a session.

	attribute : integer

	Session, event, or find list attribute for which the state is
modified.

	attribute_state : integer

	The state of the attribute to be set for the specified resource. The
interpretation of the individual attribute value is defined by the
resource.

	Return values:	None.

set_buffer

Set the size for the formatted I/O and/or serial communication buffer(s).

	Call:	set_buffer(vi, mask, size)

	VISA name:	viSetBuf

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	mask : integer

	Specifies the type of buffer.

	size : integer

	The size to be set for the specified buffer(s).

	Return values:	None.

sprintf

Same as printf, except the data is written to a user-specified buffer rather
than the device.

Warning

The current implementation only supports the following C data types:
long, double and char* (strings). Thus, you can only use these
three data types in format strings for printf, scanf and the like.

	Call:	buffer = sprintf(vi, write_format, ..., buffer_length = 1024)

	VISA name:	viSPrintf

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	write_format : string

	String describing the format for arguments.

	... : integers, floats, or strings

	Arguments sent to the buffer according to write_format.

	buffer_length : integer : keyword argument

	Length of the user-specified buffer in bytes. Defaults to 1024.

	Return values:	
	buffer : string

	Buffer where the formatted data was written to.

sscanf

Same as scanf, except that the data is read from a user-specified buffer
instead of a device.

Warning

The current implementation only supports the following C data types:
long, double and char* (strings). Thus, you can only use these
three data types in format strings for printf, scanf and the like.

	Call:	value1, value2, ... = sscanf(vi, buffer, read_format, ...,
maximal_string_length = 1024)

	VISA name:	viSScanf

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	buffer : string

	Buffer from which data is read and formatted.

	read_format : string

	String describing the format for arguments.

	... : integers, floats, or strings

	Arguments to be read from the device according to read_format. It’s
totally insignificant which values they have, they serve just as a
cheap way to determine what types are to be expected. So actually this
argument list shouldn’t be necessary, but with the current
implementation, it is, sorry.

These arguments may be (however needn’t be) the same names used for
storing the result values. Alternatively, you can give literals.

	maximal_string_length : integer : keyword argument

	The maximal length assumed for string result arguments. Note that
string results must never exceed this length. It defaults to 1024.

	Return values:	
	value1, value2, ... : integers, floats, or strings

	Arguments read from the device according to read_format. Of course,
this must be the same sequence (as far as data types are concerned) as
the given argument list ... above.

status_description

Return a user-readable description of the status code passed to the operation.

	Call:	description = status_description(vi, status)

	VISA name:	viStatusDesc

	Parameters:	
	vi : integer, ViEvent, or ViFindList

	Unique logical identifier to a session.

	status : integer

	Status code to interpret.

	Return values:	
	description : string

	The user-readable string interpretation of the status code passed to
the operation.

terminate

Request a VISA session to terminate normal execution of an operation.

	Call:	terminate(vi, degree, job_id)

	VISA name:	viTerminate

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	degree : integer

	VI_NULL

	job_id : ViJobId

	Specifies an operation identifier.

	Return values:	None.

uninstall_handler

Uninstall handlers for events.

	Call:	uninstall_handler(vi, event_type, handler, user_handle)

	VISA name:	viUninstallHandler

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	event_type : integer

	Logical event identifier.

	handler : callable

	Interpreted as a valid reference to a handler to be uninstalled by a
client application.

	user_handle : ctypes type : optional

	A value specified by an application that can be used for identifying
handlers uniquely in a session for an event. It must be the object
returned by install_handler. Consequently, it defaults to
None.

	Return values:	None.

unlock

Relinquish a lock for the specified resource.

	Call:	unlock(vi)

	VISA name:	viUnlock

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	Return values:	None.

unmap_address

Unmap memory space previously mapped by map_address.

	Call:	unmap_address(vi)

	VISA name:	viUnmapAddress

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	Return values:	None.

unmap_trigger

Undo a previous map from the specified trigger source line to the specified
destination line.

	Call:	unmap_trigger(vi, trigger_source, trigger_destination)

	VISA name:	viUnmapTrigger

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	trigger_source : integer

	Source line used in previous map.

	trigger_destination : integer

	Destination line used in previous map.

	Return values:	None.

usb_control_in

Request arbitrary data from the USB device on the control port.

	Call:	buffer = usb_control_in(vi, request_type_bitmap_field,
request_id, request_value, index, length)

	VISA name:	viUsbControlIn

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	request_type_bitmap_field : integer

	Bitmap field for defining the USB control port request. The bitmap
fields are as defined by the USB specification. The direction bit must
be device-to-host.

	request_id : integer

	Request ID for this transfer. The meaning of this value depends on
request_type_bitmap_field.

	request_value : integer

	Request value for this transfer.

	index : integer

	Specifies the interface or endpoint index number, depending on
request_type_bitmap_field.

	length : integer : optional

	Number of data in bytes to request from the device during the Data
stage. If this value is not given or 0, an empty string is returned.

	Return values:	
	buffer : string

	Actual data received from the device during the Data stage. If
length is not given or 0, an empty string is returned.

usb_control_out

Send arbitrary data to the USB device on the control port.

	Call:	usb_control_out(vi, request_type_bitmap_field, request_id, request_value,
index, buffer)

	VISA name:	viUsbControlOut

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	request_type_bitmap_field : integer

	Bitmap field for defining the USB control port request. The bitmap
fields are as defined by the USB specification. The direction bit must
be host-to-device.

	request_id : integer

	Request ID for this transfer. The meaning of this value depends on
request_type_bitmap_field.

	request_value : integer

	Request value for this transfer.

	index : integer

	Specifies the interface or endpoint index number, depending on
request_type_bitmap_field.

	buffer : string : optional

	Actual data to send to the device during the Data stage. If not given,
nothing is sent.

	Return values:	None.

vprintf, vqueryf, vscanf, vsprintf, vsscanf

These variants make no sense in Python, so I realised them as mere aliases
(just drop the “v”).

vxi_command_query

Send the device a miscellaneous command or query and/or retrieve the response
to a previous query.

	Call:	vxi_command_query(vi, mode, command)

	VISA name:	viVxiCommandQuery

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	mode : integer

	Specifies whether to issue a command and/or retrieve a response.

	command : integer

	The miscellaneous command to send.

	Return values:	
	response : integer

	The response retrieved from the device. If the mode specifies just
sending a command, this parameter may be VI_NULL.

wait_on_event

Wait for an occurrence of the specified event for a given session.

	Call:	out_event_type, out_context = wait_on_event(vi, in_event_type, timeout)

	VISA name:	viWaitOnEvent

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	in_event_type : integer

	Logical identifier of the event(s) to wait for.

	timeout : integer

	Absolute time period in milliseconds that the resource shall wait for a
specified event to occur before returning the time elapsed error.

	Return values:	
	out_event_type : integer

	Logical identifier of the event actually received.

	out_context : ViEvent

	A handle specifying the unique occurrence of an event.

write

Write data to device synchronously.

	Call:	return_count = write(vi, buffer)

	VISA name:	viWrite

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	buffer : string

	Contains the data block to be sent to the device.

	Return values:	
	return_count : integer

	The number of bytes actually transferred.

write_asynchronously

Write data to device asynchronously.

	Call:	job_id = write_asynchronously(vi, buffer)

	VISA name:	viWriteAsync

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	buffer : string

	Contains the data block to be sent to the device.

	Return values:	
	job_id : ViJobId

	The job identifier of this asynchronous write operation.

write_from_file

Take data from a file and write it out synchronously.

	Call:	return_count = write_from_file(vi, filename, count)

	VISA name:	viWriteFromFile

	Parameters:	
	vi : integer

	Unique logical identifier to a session.

	filename : string

	Name of file from which data will be read.

	count : integer

	Maximal number of bytes to be written.

	Return values:	
	return_count : integer

	Number of bytes actually transferred.

 Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	PyVISA 1.5 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pyvisa	

 	
 	
 pyvisa.ctwrapper.functions	

 Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	PyVISA 1.5 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	alias

 	ask() (Instrument method), [1]

 	

 	(pyvisa.highlevel.Instrument method)

 	ask_for_values() (Instrument method), [1]

 	

 	(pyvisa.highlevel.Instrument method)

 	

 	assert_interrupt_signal() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	assert_trigger() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	assert_utility_signal() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

B

 	

 	baud_rate (pyvisa.highlevel.SerialInstrument attribute)

 	

 	(SerialInstrument attribute), [1]

 	binary data

 	

 	buffer_read() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	buffer_write() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

C

 	

 	chunk_length

 	chunk_size, [1]

 	clear() (in module pyvisa.ctwrapper.functions)

 	

 	(Instrument method), [1]

 	(pyvisa.highlevel.VisaLibrary method)

 	

 	close() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	COM2

D

 	

 	data_bits (pyvisa.highlevel.SerialInstrument attribute)

 	

 	(SerialInstrument attribute), [1]

 	delay, [1], [2], [3]

 	

 	(Instrument attribute), [1]

 	

 	disable_event() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	discard_events() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

E

 	

 	enable_event() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	encoding (pyvisa.highlevel.Instrument attribute)

 	end_input (pyvisa.highlevel.SerialInstrument attribute)

 	

 	(SerialInstrument attribute), [1]

 	

 	ending sequence

 	EOI line, [1]

F

 	

 	factory function

 	find_next() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	find_resources() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	

 	flush() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	from_paths() (pyvisa.highlevel.VisaLibrary class method)

G

 	

 	get_attribute() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	get_default_resource_manager() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	get_instrument() (pyvisa.highlevel.ResourceManager method)

 	get_instruments_list() (built-in function)

 	Gpib (built-in class), [1]

 	gpib_command() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	

 	gpib_control_atn() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	gpib_control_ren() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	gpib_pass_control() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	gpib_send_ifc() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	GpibInstrument (built-in class), [1]

 	

 	(class in pyvisa.highlevel)

I

 	

 	in_16() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	in_32() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	in_8() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	

 	install_handler() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	Instrument (built-in class), [1]

 	

 	(class in pyvisa.highlevel)

 	instrument(), [1], [2]

 	

 	(built-in function)

K

 	

 	Keithley 2000

 	

 	keyword arguments, common, [1]

L

 	

 	list_resources() (pyvisa.highlevel.ResourceManager method)

 	list_resources_info() (pyvisa.highlevel.ResourceManager method)

 	

 	lock, [1]

 	lock() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

M

 	

 	map_address() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	map_trigger() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	Measurement and Automation Center

 	memory_allocation() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	memory_free() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	
 module

 	

 	vpp43

 	move() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	

 	move_asynchronously() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	move_in_16() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	move_in_32() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	move_in_8() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	move_out_16() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	move_out_32() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	move_out_8() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

O

 	

 	open() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	open_default_resource_manager() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	open_resource() (pyvisa.highlevel.ResourceManager method)

 	

 	out_16() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	out_32() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	out_8() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

P

 	

 	parity (pyvisa.highlevel.SerialInstrument attribute)

 	

 	(SerialInstrument attribute), [1]

 	parse_resource() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	parse_resource_extended() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	peek_16() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	peek_32() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	

 	peek_8() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	poke_16() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	poke_32() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	poke_8() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	pyvisa.ctwrapper.functions (module)

R

 	

 	read() (in module pyvisa.ctwrapper.functions)

 	

 	(Instrument method), [1]

 	(pyvisa.highlevel.Instrument method)

 	(pyvisa.highlevel.VisaLibrary method)

 	read_asynchronously() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	read_raw() (Instrument method), [1]

 	

 	(pyvisa.highlevel.Instrument method)

 	read_stb() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	read_termination (pyvisa.highlevel.Instrument attribute)

 	read_to_file() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	

 	read_values() (Instrument method), [1]

 	

 	(pyvisa.highlevel.Instrument method)

 	resource name

 	resource_info() (pyvisa.highlevel.ResourceManager method)

 	resource_manager (pyvisa.highlevel.VisaLibrary attribute)

 	ResourceManager (class in pyvisa.highlevel)

 	RS232

S

 	

 	SCPI

 	send_end, [1], [2], [3]

 	

 	(Instrument attribute), [1]

 	(pyvisa.highlevel.Instrument attribute)

 	send_ifc() (Gpib method), [1]

 	serial device

 	SerialInstrument (built-in class), [1]

 	

 	(class in pyvisa.highlevel)

 	service request

 	set_attribute() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	

 	set_buffer() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	set_cdecl_signatures() (in module pyvisa.ctwrapper.functions)

 	set_signatures() (in module pyvisa.ctwrapper.functions)

 	status (pyvisa.highlevel.VisaLibrary attribute)

 	status_description() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	stb (pyvisa.highlevel.GpibInstrument attribute)

 	stop_bits (pyvisa.highlevel.SerialInstrument attribute)

 	

 	(SerialInstrument attribute), [1]

T

 	

 	term_char, [1]

 	term_chars

 	

 	(Instrument attribute), [1]

 	(pyvisa.highlevel.Instrument attribute)

 	terminate() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	termination characters

 	

 	timeout, [1], [2]

 	

 	(Instrument attribute), [1]

 	trigger

 	trigger() (Instrument method), [1]

 	

 	(pyvisa.highlevel.Instrument method)

U

 	

 	uninstall_handler() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	unlock() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	unmap_address() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	

 	unmap_trigger() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	usb_control_in() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	usb_control_out() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

V

 	

 	values_format, [1], [2]

 	

 	(Instrument attribute), [1]

 	VISA commands, mixing with

 	VISA resource name

 	

 	VisaLibrary (class in pyvisa.highlevel)

 	
 vpp43

 	

 	module

 	vxi_command_query() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

W

 	

 	wait_for_srq() (GpibInstrument method), [1]

 	

 	(pyvisa.highlevel.GpibInstrument method)

 	wait_on_event() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	write() (in module pyvisa.ctwrapper.functions)

 	

 	(Instrument method), [1]

 	(pyvisa.highlevel.Instrument method)

 	(pyvisa.highlevel.VisaLibrary method)

 	write_asynchronously() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	

 	write_from_file() (in module pyvisa.ctwrapper.functions)

 	

 	(pyvisa.highlevel.VisaLibrary method)

 	write_raw() (pyvisa.highlevel.Instrument method)

 	write_termination (pyvisa.highlevel.Instrument attribute)

 Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

 _static/comment.png

_static/plus.png

_static/comment-bright.png

_static/comment-close.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/logo-full.jpg
PyVISA

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		PyVISA 1.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

_static/down.png

_modules/pyvisa/highlevel.html

 Navigation

 		
 index

 		
 modules |

 		PyVISA 1.5 documentation »

 		Module code »

 Source code for pyvisa.highlevel

-*- coding: utf-8 -*-
"""
 pyvisa.highlevel
    ~~~~~~~~~~~~~~~~

    High level Visa library wrapper.

    This file is part of PyVISA.

    :copyright: 2014 by PyVISA Authors, see AUTHORS for more details.
    :license: MIT, see LICENSE for more details.
"""

import time
import atexit
import warnings
import contextlib
from collections import defaultdict

from . import logger
from .constants import *
from . import ctwrapper
from . import errors
from .util import (warning_context, split_kwargs, warn_for_invalid_kwargs,
                   parse_ascii, parse_binary, get_library_paths)


def add_visa_methods(wrapper_module):
    """Decorator factory to add methods in `wrapper_module.visa_functions`
    iterable to a class.

    :param wrapper_module: the python module/package that wraps the visa library.
    """
    def _internal(aclass):
        aclass._wrapper_module = wrapper_module
        methods = wrapper_module.visa_functions
        for method in methods:
            if hasattr(aclass, method):
                setattr(aclass, '_' + method, getattr(wrapper_module, method))
            else:
                setattr(aclass, method, getattr(wrapper_module, method))
        return aclass
    return _internal


@add_visa_methods(ctwrapper)
[docs]class VisaLibrary(object):
    """High level VISA Library wrapper.

    The easiest way to instantiate the library is to let `pyvisa` find the
    right one for you. This looks first in your configuration file (~/.pyvisarc).
    If it fails, it uses `ctypes.util.find_library` to try to locate a library
    in a way similar to what the compiler does:

       >>> visa_library = VisaLibrary()

    But you can also specify the path:

        >>> visa_library = VisaLibrary('/my/path/visa.so')

    Or use the `from_paths` constructor if you want to try multiple paths:

        >>> visa_library = VisaLibrary.from_paths(['/my/path/visa.so', '/maybe/this/visa.so'])

    :param library_path: path of the VISA library.
    """

    #: Maps library path to VisaLibrary object
    _registry = dict()

    @classmethod
[docs]    def from_paths(cls, *paths):
        """Helper constructor that tries to instantiate VisaLibrary from an
        iterable of possible library paths.
        """
        errs = []
        for path in paths:
            try:
                return cls(path)
            except OSError as e:
                logger.debug('Could not open VISA library %s: %s', path, str(e))
                errs.append(str(e))
        else:
            raise OSError('Could not open VISA library:\n' + '\n'.join(errs))


    def __new__(cls, library_path=None):
        if library_path is None:
            paths = get_library_paths(cls._wrapper_module)
            if not paths:
                raise OSError('Could not found VISA library. '
                              'Please install VISA or pass its location as an argument.')
            return cls.from_paths(*paths)
        else:
            if library_path in cls._registry:
                return cls._registry[library_path]

            cls._registry[library_path] = obj = super(VisaLibrary, cls).__new__(cls)

        try:
            obj.lib = cls._wrapper_module.Library(library_path)
        except OSError as exc:
            raise errors.LibraryError.from_exception(exc, library_path)

        obj.library_path = library_path

        logger.debug('Created library wrapper for %s', library_path)

        # Set the argtypes, restype and errcheck for each function
        # of the visa library. Additionally store in `_functions` the
        # name of the functions.
        cls._wrapper_module.set_signatures(obj.lib, errcheck=obj._return_handler)

        # Set the library functions as attributes of the object.
        for method_name in getattr(obj.lib, '_functions', []):
            setattr(obj, method_name, getattr(obj.lib, method_name))

        #: Error codes on which to issue a warning.
        obj.issue_warning_on = set([VI_SUCCESS_MAX_CNT, VI_SUCCESS_DEV_NPRESENT,
                                    VI_SUCCESS_SYNC, VI_WARN_QUEUE_OVERFLOW,
                                    VI_WARN_CONFIG_NLOADED, VI_WARN_NULL_OBJECT,
                                    VI_WARN_NSUP_ATTR_STATE, VI_WARN_UNKNOWN_STATUS,
                                    VI_WARN_NSUP_BUF, VI_WARN_EXT_FUNC_NIMPL])

        #: Contains all installed event handlers.
        #: Its elements are tuples with three elements: The handler itself (a Python
        #: callable), the user handle (as a ct object) and the handler again, this
        #: time as a ct object created with CFUNCTYPE.
        obj.handlers = defaultdict(list)

        #: Last return value of the library.
        obj._status = 0

        #: Default ResourceManager instance for this library.
        obj._resource_manager = None

        obj._logging_extra = {'library_path': obj.library_path}

        return obj

    def __str__(self):
        return 'Visa Library at %s' % self.library_path

    def __repr__(self):
        return '<VisaLibrary(%r)>' % self.library_path

    @property
[docs]    def status(self):
        """Last return value of the library.
        """
        return self._status


    @property
[docs]    def resource_manager(self):
        """Default resource manager object for this library.
        """
        if self._resource_manager is None:
            self._resource_manager = ResourceManager(self)
        return self._resource_manager


    def _return_handler(self, ret_value, func, arguments):
        """Check return values for errors and warnings.
        """

        logger.debug('%s%s -> %s',
                     func.__name__, arguments, ret_value,
                     extra=self._logging_extra)

        self._status = ret_value

        if ret_value < 0:
            raise errors.VisaIOError(ret_value)

        if ret_value in self.issue_warning_on:
            warnings.warn(errors.VisaIOWarning(ret_value), stacklevel=2)

        return ret_value

[docs]    def install_handler(self, session, event_type, handler, user_handle=None):
        """Installs handlers for event callbacks.

        :param session: Unique logical identifier to a session.
        :param event_type: Logical event identifier.
        :param handler: Interpreted as a valid reference to a handler to be installed by a client application.
        :param user_handle: A value specified by an application that can be used for identifying handlers
                            uniquely for an event type.
        :returns: user handle (a ctypes object)
        """
        try:
            new_handler = self._install_handler(self.lib, session, event_type, handler, user_handle)
        except TypeError as e:
            raise errors.VisaTypeError(str(e))

        self.handlers[session].append(new_handler)
        return new_handler[1]


[docs]    def uninstall_handler(self, session, event_type, handler, user_handle=None):
        """Uninstalls handlers for events.

        :param session: Unique logical identifier to a session.
        :param event_type: Logical event identifier.
        :param handler: Interpreted as a valid reference to a handler to be uninstalled by a client application.
        :param user_handle: A value specified by an application that can be used for identifying handlers
                            uniquely in a session for an event.
        """
        for ndx, element in enumerate(self.handlers[session]):
            if element[0] is handler and element[1] is user_handle:
                del self.handlers[session][ndx]
                break
        else:
            raise errors.UnknownHandler(event_type, handler, user_handle)
        self._uninstall_handler(self.lib, session, event_type, handler, user_handle)




[docs]class ResourceManager(object):
    """VISA Resource Manager

    :param visa_library: VisaLibrary Instance or path of the VISA library
                         (if not given, the default for the platform will be used).
    """

    #: Maps VisaLibrary instance to ResourceManager
    _registry = dict()

    def __new__(cls, visa_library=None):
        if visa_library is None or isinstance(visa_library, str):
            visa_library = VisaLibrary(visa_library)

        if visa_library in cls._registry:
            return cls._registry[visa_library]

        cls._registry[visa_library] = obj = super(ResourceManager, cls).__new__(cls)

        obj.visalib = visa_library

        obj.session = obj.visalib.open_default_resource_manager()
        logger.debug('Created ResourceManager with session %s',  obj.session)
        return obj

    def __str__(self):
        return 'Resource Manager of %s' % self.visalib

    def __repr__(self):
        return '<ResourceManager(%r)>' % self.visalib

    def __del__(self):
        self.close()

    def close(self):
        if self.session is not None:
            logger.debug('Closing ResourceManager (session: %s)', self.session)
            self.visalib.close(self.session)
            self.session = None

[docs]    def list_resources(self, query='?*::INSTR'):
        """Returns a tuple of all connected devices matching query.

        :param query: regular expression used to match devices.
        """

        lib = self.visalib

        resources = []
        find_list, return_counter, instrument_description = lib.find_resources(self.session, query)
        resources.append(instrument_description)
        for i in range(return_counter - 1):
            resources.append(lib.find_next(find_list))

        return tuple(resource for resource in resources)


[docs]    def list_resources_info(self, query='?*::INSTR'):
        """Returns a dictionary mapping resource names to resource extended
        information of all connected devices matching query.

        :param query: regular expression used to match devices.
        :return: Mapping of resource name to ResourceInfo
        :rtype: dict
        """

        return dict((resource, self.resource_info(resource))
                    for resource in self.list_resources(query))


[docs]    def resource_info(self, resource_name):
        """Get the extended information of a particular resource

        :param resource_name: Unique symbolic name of a resource.

        :rtype: ResourceInfo
        """
        return self.visalib.parse_resource_extended(self.session, resource_name)


[docs]    def open_resource(self, resource_name, access_mode=VI_NO_LOCK, open_timeout=VI_TMO_IMMEDIATE):
        """Open the specified resources.

        :param resource_name: name or alias of the resource to open.
        :param access_mode: access mode.
        :param open_timeout: time out to open.

        :return: Unique logical identifier reference to a session.
        """
        return self.visalib.open(self.session, resource_name, access_mode, open_timeout)


[docs]    def get_instrument(self, resource_name, **kwargs):
        """Return an instrument for the resource name.

        :param resource_name: name or alias of the resource to open.
        :param kwargs: keyword arguments to be passed to the instrument constructor.
        """
        interface_type = self.resource_info(resource_name).interface_type

        if interface_type == VI_INTF_GPIB:
            return GpibInstrument(resource_name, resource_manager=self, **kwargs)
        elif interface_type == VI_INTF_ASRL:
            return SerialInstrument(resource_name, resource_manager=self, **kwargs)
        else:
            return Instrument(resource_name, resource_manager=self, **kwargs)




class _BaseInstrument(object):
    """Base class for instruments.

    :param resource_name: the VISA name for the resource (eg. "GPIB::10")
                          If None, it's assumed that the resource manager
                          is to be constructed.
    :param resource_manager: A resource manager instance.
                             If None, the default resource manager will be used.
    :param lock:
    :param timeout:

    See :class:Instrument for a detailed description.
    """

    DEFAULT_KWARGS = {'lock': VI_NO_LOCK,
                      'timeout': 5}

    def __init__(self, resource_name=None, resource_manager=None, **kwargs):
        warn_for_invalid_kwargs(kwargs, _BaseInstrument.DEFAULT_KWARGS.keys())

        self.resource_manager = resource_manager or get_resource_manager()
        self.visalib = self.resource_manager.visalib
        self._resource_name = resource_name

        self._logging_extra = {'library_path': self.visalib.library_path,
                               'resource_manager.session': self.resource_manager.session,
                               'resource_name': self._resource_name,
                               'session': None}

        self.open(kwargs.get('lock', _BaseInstrument.DEFAULT_KWARGS['lock']))

        for key, value in _BaseInstrument.DEFAULT_KWARGS.items():
            setattr(self, key, kwargs.get(key, value))

    def open(self, lock=None, timeout=5):
        """Opens a session to the specified resource.

        :param lock: Specifies the mode by which the resource is to be accessed.
                     Valid values: VI_NO_LOCK, VI_EXCLUSIVE_LOCK, VI_SHARED_LOCK
        :param timeout: Specifies the maximum time period (in milliseconds)
                        that this operation waits before returning an error.
        """
        lock = self.lock if lock is None else lock

        logger.debug('%s - opening ...', self._resource_name, extra=self._logging_extra)
        with warning_context("ignore", "VI_SUCCESS_DEV_NPRESENT"):
            self.session = self.resource_manager.open_resource(self._resource_name, lock)

            if self.visalib.status == VI_SUCCESS_DEV_NPRESENT:
                # okay, the device was not ready when we opened the session.
                # Now it gets five seconds more to become ready.
                # Every 0.1 seconds we probe it with viClear.
                start_time = time.time()
                sleep_time = 0.1
                try_time = 5
                while time.time() - start_time < try_time:
                    time.sleep(sleep_time)
                    try:
                        self.clear()
                        break
                    except errors.VisaIOError as error:
                        if error.error_code != VI_ERROR_NLISTENERS:
                            raise

        if timeout is None:
            self.set_visa_attribute(VI_ATTR_TMO_VALUE, VI_TMO_INFINITE)
        else:
            self.timeout = timeout

        self._logging_extra['session'] = self.session
        logger.debug('%s - is open with session %s',
                     self._resource_name, self.session,
                     extra=self._logging_extra)

    def close(self):
        """Closes the VISA session and marks the handle as invalid.
        """
        if self.resource_manager.session is None or self.session is None:
            return

        logger.debug('%s - closing', self._resource_name,
                     extra=self._logging_extra)
        self.visalib.close(self.session)
        logger.debug('%s - is closed', self._resource_name,
                     extra=self._logging_extra)
        self.session = None

    def __del__(self):
        self.close()

    def __str__(self):
        return "%s at %s" % (self.__class__.__name__, self.resource_name)

    def __repr__(self):
        return "<%r(%r)>" % (self.__class__.__name__, self.resource_name)

    def get_visa_attribute(self, name):
        return self.visalib.get_attribute(self.session, name)

    def set_visa_attribute(self, name, status):
        self.visalib.set_attribute(self.session, name, status)

    def clear(self):
        self.visalib.clear(self.session)

    @property
    def timeout(self):
        """The timeout in seconds for all resource I/O operations.

        Note that the VISA library may round up this value heavily.
        I experienced that my NI VISA implementation had only the
        values 0, 1, 3 and 10 seconds.

        """
        timeout = self.get_visa_attribute(VI_ATTR_TMO_VALUE)
        if timeout == VI_TMO_INFINITE:
            raise NameError("no timeout is specified")
        return timeout / 1000.0

    @timeout.setter
    def timeout(self, timeout):
        if not (0 <= timeout <= 4294967):
            raise ValueError("timeout value is invalid")
        self.set_visa_attribute(VI_ATTR_TMO_VALUE, int(timeout * 1000))

    @timeout.deleter
    def timeout(self):
        timeout = self.timeout  # just to test whether it's defined
        self.set_visa_attribute(VI_ATTR_TMO_VALUE, VI_TMO_INFINITE)

    @property
    def resource_class(self):
        """The resource class of the resource as a string.
        """

        # TODO: Check possible outputs.
        try:
            return self.get_visa_attribute(VI_ATTR_RSRC_CLASS).upper()
        except errors.VisaIOError as error:
            if error.error_code != VI_ERROR_NSUP_ATTR:
                raise
        return 'Unknown'

    @property
    def resource_name(self):
        """The VISA resource name of the resource as a string.
        """
        return self.get_visa_attribute(VI_ATTR_RSRC_NAME)

    @property
    def interface_type(self):
        """The interface type of the resource as a number.
        """
        return self.visalib.parse_resource(self.resource_manager.session,
                                           self.resource_name).interface_type

    @contextlib.contextmanager
    def read_termination_context(self, new_termination):
        term = self.get_visa_attribute(VI_ATTR_TERMCHAR)
        self.set_visa_attribute(VI_ATTR_TERMCHAR, ord(new_termination[-1]))
        yield
        self.set_visa_attribute(VI_ATTR_TERMCHAR, term)

# The bits in the bitfield mean the following:
#
# bit number   if set / if not set
#     0          binary/ascii
#     1          double/single (IEEE floating point)
#     2          big-endian/little-endian
#
# This leads to the following constants:

ascii      = 0
single     = 1
double     = 3
big_endian = 4

CR = '\r'
LF = '\n'


[docs]class Instrument(_BaseInstrument):
    """Class for all kinds of Instruments.

    It can be instantiated, however, if you want to use special features of a
    certain interface system (GPIB, USB, RS232, etc), you must instantiate one
    of its child classes.

    :param resource_name: the instrument's resource name or an alias,
                          may be taken from the list from
                          `list_resources` method from a ResourceManager.
    :param timeout: the VISA timeout for each low-level operation in
                    milliseconds.
    :param term_chars: the termination characters for this device.
    :param chunk_size: size of data packets in bytes that are read from the
                       device.
    :param lock: whether you want to have exclusive access to the device.
                 Default: VI_NO_LOCK
    :param ask_delay: waiting time in seconds after each write command.
                      Default: 0.0
    :param send_end: whether to assert end line after each write command.
                     Default: True
    :param values_format: floating point data value format. Default: ascii (0)
    """

    #: Termination character sequence (Legacy, to be removed in 1.6).
    __term_chars = None


    DEFAULT_KWARGS = {'read_termination': None,
                      'write_termination': CR + LF,
                      #: How many bytes are read per low-level call.
                      'chunk_size': 20 * 1024,
                      #: Seconds to wait between write and read operations inside ask.
                      'ask_delay': 0.0,
                      'send_end': True,
                      #: floating point data value format
                      'values_format': ascii,
                      #: encoding of the messages
                      'encoding': 'ascii'}

    ALL_KWARGS = dict(DEFAULT_KWARGS, **_BaseInstrument.DEFAULT_KWARGS)

    def __init__(self, resource_name, resource_manager=None, **kwargs):
        skwargs, pkwargs = split_kwargs(kwargs,
                                        Instrument.DEFAULT_KWARGS.keys(),
                                        _BaseInstrument.DEFAULT_KWARGS.keys())

        self._read_termination = None
        self._write_termination = None

        if 'term_chars' in kwargs:
            kwargs['read_termination'] = kwargs['term_chars']
            kwargs['write_termination'] = kwargs['term_chars']

        super(Instrument, self).__init__(resource_name, resource_manager, **pkwargs)

        for key, value in Instrument.DEFAULT_KWARGS.items():
            setattr(self, key, skwargs.get(key, value))

        if not self.resource_class:
            warnings.warn("resource class of instrument could not be determined",
                          stacklevel=2)
        elif self.resource_class not in ("INSTR", "RAW", "SOCKET"):
            warnings.warn("given resource was not an INSTR but %s"
                          % self.resource_class, stacklevel=2)

    @property
    def encoding(self):
        """Encoding used for read and write operations.
        """
        return self._encoding

    @encoding.setter
[docs]    def encoding(self, encoding):
        _ = 'test encoding'.encode(encoding).decode(encoding)
        self._encoding = encoding


    @property
    def read_termination(self):
        """Read termination character.
        """
        return self._read_termination

    @read_termination.setter
[docs]    def read_termination(self, value):

        if value:
            # termination character, the rest is just used for verification after
            # each read operation.
            last_char = value[-1:]
            # Consequently, it's illogical to have the real termination character
            # twice in the sequence (otherwise reading would stop prematurely).

            if last_char in value[:-1]:
                raise ValueError("ambiguous ending in termination characters")

            self.set_visa_attribute(VI_ATTR_TERMCHAR, ord(last_char))
            self.set_visa_attribute(VI_ATTR_TERMCHAR_EN, VI_TRUE)
        else:
            self.set_visa_attribute(VI_ATTR_TERMCHAR_EN, VI_FALSE)

        self._read_termination = value


    @property
    def write_termination(self):
        """Writer termination character.
        """
        return self._write_termination

    @write_termination.setter
[docs]    def write_termination(self, value):
        self._write_termination = value


[docs]    def write_raw(self, message):
        """Write a string message to the device.

        The term_chars are appended to it, unless they are already.

        :param message: the message to be sent.
        :type message: bytes
        :return: number of bytes written.
        :rtype: int
        """
        return self.visalib.write(self.session, message)


[docs]    def write(self, message, termination=None, encoding=None):
        """Write a string message to the device.

        The term_chars are appended to it, unless they are already.

        :param message: the message to be sent.
        :type message: unicode (Py2) or str (Py3)
        :return: number of bytes written.
        :rtype: int
        """

        term = self._write_termination if termination is None else termination
        enco = self._encoding if encoding is None else encoding

        if term:
            if message.endswith(term):
                warnings.warn("write message already ends with "
                              "termination characters", stacklevel=2)
            message += term

        count = self.write_raw(message.encode(enco))

        return count


[docs]    def read_raw(self, size=None):
        """Read the unmodified string sent from the instrument to the computer.

        In contrast to read(), no termination characters are stripped.

        :rtype: bytes
        """
        size = self.chunk_size if size is None else size

        ret = bytes()
        with warning_context("ignore", "VI_SUCCESS_MAX_CNT"):
            try:
                status = VI_SUCCESS_MAX_CNT
                while status == VI_SUCCESS_MAX_CNT:
                    logger.debug('%s - reading %d bytes (last status %r)',
                                 self._resource_name, size, status)
                    ret += self.visalib.read(self.session, size)
                    status = self.visalib.status
            except errors.VisaIOError as e:
                logger.debug('%s - exception while reading: %s', self._resource_name, e)
                raise

        return ret


[docs]    def read(self, termination=None, encoding=None):
        """Read a string from the device.

        Reading stops when the device stops sending (e.g. by setting
        appropriate bus lines), or the termination characters sequence was
        detected.  Attention: Only the last character of the termination
        characters is really used to stop reading, however, the whole sequence
        is compared to the ending of the read string message.  If they don't
        match, a warning is issued.

        All line-ending characters are stripped from the end of the string.

        :rtype: str
        """
        enco = self._encoding if encoding is None else encoding

        if termination is None:
            termination = self._read_termination
            message = self.read_raw().decode(enco)
        else:
            with self.read_termination_context(termination):
                message = self.read_raw().decode(enco)

        if not termination:
            return message

        if not message.endswith(termination):
            warnings.warn("read string doesn't end with "
                          "termination characters", stacklevel=2)

        if self.__term_chars is None:
            return message.rstrip(CR + LF)

        return message[:-len(termination)]


[docs]    def read_values(self, fmt=None):
        """Read a list of floating point values from the device.

        :param fmt: the format of the values.  If given, it overrides
            the class attribute "values_format".  Possible values are bitwise
            disjunctions of the above constants ascii, single, double, and
            big_endian.  Default is ascii.

        :return: the list of read values
        :rtype: list
        """
        if not fmt:
            fmt = self.values_format

        if fmt & 0x01 == ascii:
            return parse_ascii(self.read())

        data = self.read_raw()

        try:
            if fmt & 0x03 == single:
                is_single = True
            elif fmt & 0x03 == double:
                is_single = False
            else:
                raise ValueError("unknown data values fmt requested")
            return parse_binary(data, fmt & 0x04 == big_endian, is_single)
        except ValueError as e:
            raise errors.InvalidBinaryFormat(e.args)


[docs]    def ask(self, message, delay=None):
        """A combination of write(message) and read()

        :param message: the message to send.
        :type message: str
        :param delay: delay in seconds between write and read operations.
                      if None, defaults to self.ask_delay
        :returns: the answer from the device.
        :rtype: str
        """

        self.write(message)
        if delay is None:
            delay = self.ask_delay
        if delay > 0.0:
            time.sleep(delay)
        return self.read()


[docs]    def ask_for_values(self, message, format=None, delay=None):
        """A combination of write(message) and read_values()

        :param message: the message to send.
        :type message: str
        :param delay: delay in seconds between write and read operations.
                      if None, defaults to self.ask_delay
        :returns: the answer from the device.
        :rtype: list
        """

        self.write(message)
        if delay is None:
            delay = self.ask_delay
        if delay > 0.0:
            time.sleep(delay)
        return self.read_values(format)


[docs]    def trigger(self):
        """Sends a software trigger to the device.
        """

        self.set_visa_attribute(VI_ATTR_TRIG_ID, VI_TRIG_SW)
        self.visalib.assert_trigger(self.session, VI_TRIG_PROT_DEFAULT)


    @property
    def term_chars(self):
        """Set or read a new termination character sequence (property).

        Normally, you just give the new termination sequence, which is appended
        to each write operation (unless it's already there), and expected as
        the ending mark during each read operation.  A typical example is CR+LF
        or just CR.  If you assign "" to this property, the termination
        sequence is deleted.

        The default is None, which means that CR + LF is appended to each write
        operation but not expected after each read operation (but stripped if
        present).
        """

        return self.__term_chars

    @term_chars.setter
    def term_chars(self, term_chars):

        # First, reset termination characters, in case something bad happens.
        self.__term_chars = ""

        if term_chars == "" or term_chars is None:
            self.read_termination = None
            self.write_termination = CR + LF
            self.__term_chars = None
            return
            # Only the last character in term_chars is the real low-level

        self.read_termination = term_chars
        self.write_termination = term_chars

    @term_chars.deleter
[docs]    def term_chars(self):
        self.term_chars = None


    @property
    def send_end(self):
        """Whether or not to assert EOI (or something equivalent after each
        write operation.
        """

        return self.get_visa_attribute(VI_ATTR_SEND_END_EN) == VI_TRUE

    @send_end.setter
[docs]    def send_end(self, send):
        self.set_visa_attribute(VI_ATTR_SEND_END_EN, VI_TRUE if send else VI_FALSE)




[docs]class GpibInstrument(Instrument):
    """Class for GPIB instruments.

    This class extents the Instrument class with special operations and
    properties of GPIB instruments.

    :param gpib_identifier: strings are interpreted as instrument's VISA resource name.
                            Numbers are interpreted as GPIB number.
    :param board_number: the number of the GPIB bus.

    Further keyword arguments are passed to the constructor of class
    Instrument.

    """

    def __init__(self, gpib_identifier, board_number=0, resource_manager=None, **keyw):
        warn_for_invalid_kwargs(keyw, Instrument.ALL_KWARGS.keys())
        if isinstance(gpib_identifier, int):
            resource_name = "GPIB%d::%d" % (board_number, gpib_identifier)
        else:
            resource_name = gpib_identifier

        super(GpibInstrument, self).__init__(resource_name, resource_manager, **keyw)

        # Now check whether the instrument is really valid
        if self.interface_type != VI_INTF_GPIB:
            raise ValueError("device is not a GPIB instrument")

        self.visalib.enable_event(self.session, VI_EVENT_SERVICE_REQ, VI_QUEUE)

    def __del__(self):
        if self.session is not None:
            self.__switch_events_off()
            super(GpibInstrument, self).__del__()

    def __switch_events_off(self):
        self.visalib.disable_event(self.session, VI_ALL_ENABLED_EVENTS, VI_ALL_MECH)
        self.visalib.discard_events(self.session, VI_ALL_ENABLED_EVENTS, VI_ALL_MECH)

[docs]    def wait_for_srq(self, timeout=25):
        """Wait for a serial request (SRQ) coming from the instrument.

        Note that this method is not ended when *another* instrument signals an
        SRQ, only *this* instrument.

        :param timeout: the maximum waiting time in seconds.
                        Defaul: 25 (seconds).
                        None means waiting forever if necessary.
        """
        lib = self.visalib

        lib.enable_event(self.session, VI_EVENT_SERVICE_REQ, VI_QUEUE)

        if timeout and not(0 <= timeout <= 4294967):
            raise ValueError("timeout value is invalid")

        starting_time = time.clock()

        while True:
            if timeout is None:
                adjusted_timeout = VI_TMO_INFINITE
            else:
                adjusted_timeout = int((starting_time + timeout - time.clock()) * 1000)
                if adjusted_timeout < 0:
                    adjusted_timeout = 0

            event_type, context = lib.wait_on_event(self.session, VI_EVENT_SERVICE_REQ,
                                                    adjusted_timeout)
            lib.close(context)
            if self.stb & 0x40:
                break

        lib.discard_events(self.session, VI_EVENT_SERVICE_REQ, VI_QUEUE)


    @property
[docs]    def stb(self):
        """Service request status register."""

        return self.visalib.read_stb(self.session)

# The following aliases are used for the "end_input" property


no_end_input = VI_ASRL_END_NONE
last_bit_end_input = VI_ASRL_END_LAST_BIT
term_chars_end_input = VI_ASRL_END_TERMCHAR

# The following aliases are used for the "parity" property
no_parity = VI_ASRL_PAR_NONE
odd_parity = VI_ASRL_PAR_ODD
even_parity = VI_ASRL_PAR_EVEN
mark_parity = VI_ASRL_PAR_MARK
space_parity = VI_ASRL_PAR_SPACE


[docs]class SerialInstrument(Instrument):
    """Class for serial (RS232 or parallel port) instruments.  Not USB!

    This class extents the Instrument class with special operations and
    properties of serial instruments.

    :param resource_name: the instrument's resource name or an alias, may be
        taken from the list from `list_resources` method from a ResourceManager.

    Further keyword arguments are passed to the constructor of class
    Instrument.
    """

    DEFAULT_KWARGS = {'baud_rate': 9600,
                      'data_bits': 8,
                      'stop_bits': 1,
                      'parity': no_parity,
                      'end_input': term_chars_end_input}

    def __init__(self, resource_name, resource_manager=None, **keyw):
        skwargs, pkwargs = split_kwargs(keyw,
                                        SerialInstrument.DEFAULT_KWARGS.keys(),
                                        Instrument.ALL_KWARGS.keys())

        pkwargs.setdefault("read_termination", CR)
        pkwargs.setdefault("write_termination", CR)

        super(SerialInstrument, self).__init__(resource_name, resource_manager, **pkwargs)
        # Now check whether the instrument is really valid
        if self.interface_type != VI_INTF_ASRL:
            raise ValueError("device is not a serial instrument")

        for key, value in SerialInstrument.DEFAULT_KWARGS.items():
            setattr(self, key, skwargs.get(key, value))

    @property
    def baud_rate(self):
        """The baud rate of the serial instrument.
        """
        return self.get_visa_attribute(VI_ATTR_ASRL_BAUD)

    @baud_rate.setter
[docs]    def baud_rate(self, rate):
        self.set_visa_attribute(VI_ATTR_ASRL_BAUD, rate)


    @property
    def data_bits(self):
        """Number of data bits contained in each frame (from 5 to 8).
        """

        return self.get_visa_attribute(VI_ATTR_ASRL_DATA_BITS)

    @data_bits.setter
[docs]    def data_bits(self, bits):
        if not 5 <= bits <= 8:
            raise ValueError("number of data bits must be from 5 to 8")

        self.set_visa_attribute(VI_ATTR_ASRL_DATA_BITS, bits)


    @property
    def stop_bits(self):
        """Number of stop bits contained in each frame (1, 1.5, or 2).
        """

        deci_bits = self.get_visa_attribute(VI_ATTR_ASRL_STOP_BITS)
        if deci_bits == 10:
            return 1
        elif deci_bits == 15:
            return 1.5
        elif deci_bits == 20:
            return 2

    @stop_bits.setter
[docs]    def stop_bits(self, bits):
        deci_bits = 10 * bits
        if 9 < deci_bits < 11:
            deci_bits = 10
        elif 14 < deci_bits < 16:
            deci_bits = 15
        elif 19 < deci_bits < 21:
            deci_bits = 20
        else:
            raise ValueError("invalid number of stop bits")

        self.set_visa_attribute(VI_ATTR_ASRL_STOP_BITS, deci_bits)


    @property
    def parity(self):
        """The parity used with every frame transmitted and received."""

        return self.get_visa_attribute(VI_ATTR_ASRL_PARITY)

    @parity.setter
[docs]    def parity(self, parity):

        self.set_visa_attribute(VI_ATTR_ASRL_PARITY, parity)


    @property
    def end_input(self):
        """indicates the method used to terminate read operations"""

        return self.get_visa_attribute(VI_ATTR_ASRL_END_IN)

    @end_input.setter
[docs]    def end_input(self, termination):
        self.set_visa_attribute(VI_ATTR_ASRL_END_IN, termination)




def get_instruments_list(use_aliases=True):
    """Get a list of all connected devices.

    This function is kept for backwards compatibility with PyVISA < 1.5.

    Use::

        >>> rm = ResourceManager()
        >>> rm.list_resources()

    or::

        >>> rm = ResourceManager()
        >>> rm.list_resources_info()

    in the future.

    :param use_aliases: if True (default), return the device alias if it has one.
                        Otherwise, always return the standard resource name
                        like "GPIB::10".

    :return: A list of strings with the names of all connected devices,
             ready for being used to open each of them.

    """

    if use_aliases:
        return [info.alias or resource_name
                for resource_name, info in get_resource_manager().list_resources_info().items()]

    return get_resource_manager().list_resources()


def instrument(resource_name, **kwargs):
    """Factory function for instrument instances.

    :param resource_name: the VISA resource name of the device.
                          It may be an alias.
    :param kwargs: keyword argument for the class constructor of the device instance
                   to be generated.  See the class Instrument for further information.

    :return: The generated instrument instance.

    """

    return get_resource_manager().get_instrument(resource_name, **kwargs)


resource_manager = None

def get_resource_manager():
    global resource_manager
    if resource_manager is None:
        resource_manager = ResourceManager()
        atexit.register(resource_manager.__del__)
    return resource_manager





          

      

      

    


    
        © Copyright 2014, PyVISA Authors.
      Created using Sphinx 1.2.2.
    

  

_modules/pyvisa/ctwrapper/functions.html


    
      Navigation


      
        		
          index


        		
          modules |


        		PyVISA 1.5 documentation »


          		Module code »

 
      


    


    
      
          
            
  Source code for pyvisa.ctwrapper.functions

# -*- coding: utf-8 -*-
"""
    pyvisa.wrapper.functions
    ~~~~~~~~~~~~~~~~~~~~~~~~

 Defines VPP 4.3.2 wrapping functions, adding signatures to the library.

 This file is part of PyVISA.

 :copyright: 2014 by PyVISA Authors, see AUTHORS for more details.
 :license: MIT, see LICENSE for more details.
"""

from __future__ import division, unicode_literals, print_function, absolute_import

import collections

from ctypes import (byref, c_void_p, c_double, c_long, POINTER, CDLL, create_string_buffer)

from . import FUNCTYPE
from ..constants import *
from .types import *
from .attributes import attributes

visa_functions = [
 "assert_interrupt_signal", "assert_trigger", "assert_utility_signal",
 "buffer_read", "buffer_write", "clear", "close", "disable_event",
 "discard_events", "enable_event", "find_next", "find_resources", "flush",
 "get_attribute", "get_default_resource_manager", "gpib_command",
 "gpib_control_atn", "gpib_control_ren", "gpib_pass_control",
 "gpib_send_ifc", "in_16", "in_32", "in_8", "install_handler", "lock",
 "map_address", "map_trigger", "memory_allocation", "memory_free", "move",
 "move_asynchronously", "move_in_16", "move_in_32", "move_in_8",
 "move_out_16", "move_out_32", "move_out_8", "open",
 "open_default_resource_manager", "out_16", "out_32", "out_8",
 "parse_resource", "parse_resource_extended", "peek_16", "peek_32",
 "peek_8", "poke_16", "poke_32", "poke_8", "printf", "queryf", "read",
 "read_asynchronously", "read_to_file", "read_stb", "scanf",
 "set_attribute", "set_buffer", "sprintf", "sscanf", "status_description",
 "terminate", "uninstall_handler", "unlock", "unmap_address",
 "unmap_trigger", "usb_control_in", "usb_control_out", "vprintf", "vqueryf",
 "vscanf", "vsprintf", "vsscanf", "vxi_command_query", "wait_on_event",
 "write", "write_asynchronously", "write_from_file"]

__all__ = ["visa_functions", 'set_signatures', 'set_cdecl_signatures'] + visa_functions

VI_SPEC_VERSION = 0x00300000

#: Resource extended information
ResourceInfo = collections.namedtuple('ResourceInfo',
 'interface_type interface_board_number '
 'resource_class resource_name alias')

def set_user_handle_type(library, user_handle):
 """Set the type of the user handle to install and uninstall handler signature.

 :param library: the visa library wrapped by ctypes.
 :param user_handle: use None for a void_p
 """

 # Actually, it's not necessary to change ViHndlr *globally*. However,
 # I don't want to break symmetry too much with all the other VPP43
 # routines.
 global ViHndlr

 if user_handle is None:
 user_handle_p = c_void_p
 else:
 user_handle_p = POINTER(type(user_handle))

 ViHndlr = FUNCTYPE(ViStatus, ViSession, ViEventType, ViEvent, user_handle_p)
 library.viInstallHandler.argtypes = [ViSession, ViEventType, ViHndlr, user_handle_p]
 library.viUninstallHandler.argtypes = [ViSession, ViEventType, ViHndlr, user_handle_p]

[docs]def set_signatures(library, errcheck=None):
 """Set the signatures of most visa functions in the library.

 All instrumentation related functions are specified here.
 String related functions such as `viPrintf` require a cdecl
 calling convention even in windows and therefore are require
 a CDLL object. See `set_cdecl_signatures`.

 :param library: the visa library wrapped by ctypes.
 :type library: ctypes.WinDLL or ctypes.CDLL
 :param errcheck: error checking callable used for visa functions that return
 ViStatus.
 It should be take three areguments (result, func, arguments).
 See errcheck in ctypes.
 """
 if not hasattr(library, '_functions'):
 library._functions = []

 def _applier(restype, errcheck_):
 def _internal(function_name, argtypes, maybe_missing=False):
 library._functions.append(function_name)
 set_signature(library, function_name, argtypes, restype, errcheck_, maybe_missing)
 return _internal

 # Visa functions with ViStatus return code
 apply = _applier(ViStatus, errcheck)
 apply("viAssertIntrSignal", [ViSession, ViInt16, ViUInt32])
 apply("viAssertTrigger", [ViSession, ViUInt16])
 apply("viAssertUtilSignal", [ViSession, ViUInt16])
 apply("viBufRead", [ViSession, ViPBuf, ViUInt32, ViPUInt32])
 apply("viBufWrite", [ViSession, ViBuf, ViUInt32, ViPUInt32])
 apply("viClear", [ViSession])
 apply("viClose", [ViObject])
 apply("viDisableEvent", [ViSession, ViEventType, ViUInt16])
 apply("viDiscardEvents", [ViSession, ViEventType, ViUInt16])
 apply("viEnableEvent", [ViSession, ViEventType, ViUInt16, ViEventFilter])
 apply("viFindNext", [ViSession, ViAChar])
 apply("viFindRsrc", [ViSession, ViString, ViPFindList, ViPUInt32, ViAChar])
 apply("viFlush", [ViSession, ViUInt16])
 apply("viGetAttribute", [ViObject, ViAttr, c_void_p])
 apply("viGpibCommand", [ViSession, ViBuf, ViUInt32, ViPUInt32])
 apply("viGpibControlATN", [ViSession, ViUInt16])
 apply("viGpibControlREN", [ViSession, ViUInt16])
 apply("viGpibPassControl", [ViSession, ViUInt16, ViUInt16])
 apply("viGpibSendIFC", [ViSession])

 apply("viIn8", [ViSession, ViUInt16, ViBusAddress, ViPUInt8])
 apply("viIn16", [ViSession, ViUInt16, ViBusAddress, ViPUInt16])
 apply("viIn32", [ViSession, ViUInt16, ViBusAddress, ViPUInt32])
 apply("viIn64", [ViSession, ViUInt16, ViBusAddress, ViPUInt64])

 apply("viIn8Ex", [ViSession, ViUInt16, ViBusAddress64, ViPUInt8])
 apply("viIn16Ex", [ViSession, ViUInt16, ViBusAddress64, ViPUInt16])
 apply("viIn32Ex", [ViSession, ViUInt16, ViBusAddress64, ViPUInt32])
 apply("viIn64Ex", [ViSession, ViUInt16, ViBusAddress64, ViPUInt64])

 apply("viInstallHandler", [ViSession, ViEventType, ViHndlr, ViAddr])
 apply("viLock", [ViSession, ViAccessMode, ViUInt32, ViKeyId, ViAChar])
 apply("viMapAddress", [ViSession, ViUInt16, ViBusAddress, ViBusSize, ViBoolean, ViAddr, ViPAddr])
 apply("viMapTrigger", [ViSession, ViInt16, ViInt16, ViUInt16])
 apply("viMemAlloc", [ViSession, ViBusSize, ViPBusAddress])
 apply("viMemFree", [ViSession, ViBusAddress])
 apply("viMove", [ViSession, ViUInt16, ViBusAddress, ViUInt16,
 ViUInt16, ViBusAddress, ViUInt16, ViBusSize])
 apply("viMoveAsync", [ViSession, ViUInt16, ViBusAddress, ViUInt16,
 ViUInt16, ViBusAddress, ViUInt16, ViBusSize,
 ViPJobId])

 apply("viMoveIn8", [ViSession, ViUInt16, ViBusAddress, ViBusSize, ViAUInt8])
 apply("viMoveIn16", [ViSession, ViUInt16, ViBusAddress, ViBusSize, ViAUInt16])
 apply("viMoveIn32", [ViSession, ViUInt16, ViBusAddress, ViBusSize, ViAUInt32])
 apply("viMoveIn64", [ViSession, ViUInt16, ViBusAddress, ViBusSize, ViAUInt64])

 apply("viMoveIn8Ex", [ViSession, ViUInt16, ViBusAddress64, ViBusSize, ViAUInt8])
 apply("viMoveIn16Ex", [ViSession, ViUInt16, ViBusAddress64, ViBusSize, ViAUInt16])
 apply("viMoveIn32Ex", [ViSession, ViUInt16, ViBusAddress64, ViBusSize, ViAUInt32])
 apply("viMoveIn64Ex", [ViSession, ViUInt16, ViBusAddress64, ViBusSize, ViAUInt64])

 apply("viMoveOut8", [ViSession, ViUInt16, ViBusAddress, ViBusSize, ViAUInt8])
 apply("viMoveOut16", [ViSession, ViUInt16, ViBusAddress, ViBusSize, ViAUInt16])
 apply("viMoveOut32", [ViSession, ViUInt16, ViBusAddress, ViBusSize, ViAUInt32])
 apply("viMoveOut64", [ViSession, ViUInt16, ViBusAddress, ViBusSize, ViAUInt64])

 apply("viMoveOut8Ex", [ViSession, ViUInt16, ViBusAddress64, ViBusSize, ViAUInt8])
 apply("viMoveOut16Ex", [ViSession, ViUInt16, ViBusAddress64, ViBusSize, ViAUInt16])
 apply("viMoveOut32Ex", [ViSession, ViUInt16, ViBusAddress64, ViBusSize, ViAUInt32])
 apply("viMoveOut64Ex", [ViSession, ViUInt16, ViBusAddress64, ViBusSize, ViAUInt64])

 apply("viOpen", [ViSession, ViRsrc, ViAccessMode, ViUInt32, ViPSession], maybe_missing=False)

 apply("viOpenDefaultRM", [ViPSession])

 apply("viOut8", [ViSession, ViUInt16, ViBusAddress, ViUInt8])
 apply("viOut16", [ViSession, ViUInt16, ViBusAddress, ViUInt16])
 apply("viOut32", [ViSession, ViUInt16, ViBusAddress, ViUInt32])
 apply("viOut64", [ViSession, ViUInt16, ViBusAddress, ViUInt64])

 apply("viOut8Ex", [ViSession, ViUInt16, ViBusAddress64, ViUInt8])
 apply("viOut16Ex", [ViSession, ViUInt16, ViBusAddress64, ViUInt16])
 apply("viOut32Ex", [ViSession, ViUInt16, ViBusAddress64, ViUInt32])
 apply("viOut64Ex", [ViSession, ViUInt16, ViBusAddress64, ViUInt64])

 apply("viParseRsrc", [ViSession, ViRsrc, ViPUInt16, ViPUInt16])
 apply("viParseRsrcEx", [ViSession, ViRsrc, ViPUInt16, ViPUInt16, ViAChar, ViAChar, ViAChar])

 apply("viRead", [ViSession, ViPBuf, ViUInt32, ViPUInt32])
 apply("viReadAsync", [ViSession, ViPBuf, ViUInt32, ViPJobId])
 apply("viReadSTB", [ViSession, ViPUInt16])
 apply("viReadToFile", [ViSession, ViString, ViUInt32, ViPUInt32])

 apply("viSetAttribute", [ViObject, ViAttr, ViAttrState])
 apply("viSetBuf", [ViSession, ViUInt16, ViUInt32])

 apply("viStatusDesc", [ViObject, ViStatus, ViAChar])
 apply("viTerminate", [ViSession, ViUInt16, ViJobId])
 apply("viUninstallHandler", [ViSession, ViEventType, ViHndlr, ViAddr])
 apply("viUnlock", [ViSession])
 apply("viUnmapAddress", [ViSession])
 apply("viUnmapTrigger", [ViSession, ViInt16, ViInt16])
 apply("viUsbControlIn", [ViSession, ViInt16, ViInt16, ViUInt16,
 ViUInt16, ViUInt16, ViPBuf, ViPUInt16])
 apply("viUsbControlOut", [ViSession, ViInt16, ViInt16, ViUInt16,
 ViUInt16, ViUInt16, ViPBuf])

 # The following "V" routines are *not* implemented in PyVISA, and will
 # never be: viVPrintf, viVQueryf, viVScanf, viVSPrintf, viVSScanf

 apply("viVxiCommandQuery", [ViSession, ViUInt16, ViUInt32, ViPUInt32])
 apply("viWaitOnEvent", [ViSession, ViEventType, ViUInt32, ViPEventType, ViPEvent])
 apply("viWrite", [ViSession, ViBuf, ViUInt32, ViPUInt32])
 apply("viWriteAsync", [ViSession, ViBuf, ViUInt32, ViPJobId])
 apply("viWriteFromFile", [ViSession, ViString, ViUInt32, ViPUInt32])

 # Functions that return void.
 apply = _applier(None, None)
 apply("viPeek8", [ViSession, ViAddr, ViPUInt8])
 apply("viPeek16", [ViSession, ViAddr, ViPUInt16])
 apply("viPeek32", [ViSession, ViAddr, ViPUInt32])
 apply("viPeek64", [ViSession, ViAddr, ViPUInt64])

 apply("viPoke8", [ViSession, ViAddr, ViUInt8])
 apply("viPoke16", [ViSession, ViAddr, ViUInt16])
 apply("viPoke32", [ViSession, ViAddr, ViUInt32])
 apply("viPoke64", [ViSession, ViAddr, ViUInt64])

def set_signature(library, function_name, argtypes, restype, errcheck, maybe_missing=True):
 """Set the signature of single function in a library.

 :param library: ctypes wrapped library.
 :type library: ctypes.WinDLL or ctypes.CDLL
 :param function_name: name of the function as appears in the header file.
 :type function_name: str
 :param argtypes: a tuple of ctypes types to specify the argument types that the function accepts.
 :param restype: A ctypes type to specify the result type of the foreign function.
 Use None for void, a function not returning anything.
 :param errcheck: a callabe
 :param maybe_missing: if False, an Attribute error will be raised if the
 function_name is not found.

 :raises: AttributeError
 """

 try:
 func = getattr(library, function_name)
 func.argtypes = argtypes
 if restype is not None:
 func.restype = restype
 if errcheck is not None:
 func.errcheck = errcheck
 except AttributeError:
 if not maybe_missing:
 raise

The VPP-4.3.2 routines

Usually, there is more than one way to pass parameters to ctypes calls. The
ctypes policy used in this code goes as follows:
#
* Null pointers are passed as "None" rather than "0". This is a little bit
unfortunate, since the VPP specification calls this "VI_NULL", but I can't
use "VI_NULL" since it's an integer and may not be compatible with a
pointer type (don't know whether this is really dangerous).
#
* Strings must have been created with "create_string_buffer" and are passed
without any further conversion; they stand in the parameter list as is.
The same applies to pseudo-string types as ViRsrc or VuBuf. Their Pythonic
counterpats are strings as well.
#
* All other types are explicitly cast using the types defined by ctypes'
"restype".
#
Further notes:
#
* The following Python routines take and give handles as ctypes objects.
Since the user shouldn't be interested in handle values anyway, I see no
point in converting them to Python strings or integers.
#
* All other parameters are natural Python types, i.e. strings (may contain
binary data) and integers. The same is true for return values.
#
* The original VPP function signatures cannot be realised in Python, at least
not in a sensible way, because a) Python has no real call-by-reference, and
b) Python allows for more elegant solutions, e.g. using len(buffer) instead
of a separate "count" parameter, or using tuples as return values.
#
Therefore, all function signatures have been carefully adjusted. I think
this is okay, since the original standard must be adopted to at least C and
Visual Basic anyway, with slight modifications. I also made the function
names and parameters more legible, but in a way that it's perfectly clear
which original function is meant.
#
The important thing is that the semantics of functions and parameters are
totally intact, and the inner order of parameters, too. There is a 1:1
mapping.

[docs]def assert_interrupt_signal(library, session, mode, status_id):
 """Asserts the specified interrupt or signal.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param mode: How to assert the interrupt. (Constants.ASSERT*)
 :param status_id: This is the status value to be presented during an interrupt acknowledge cycle.
 """
 library.viAssertIntrSignal(session, mode, status_id)

[docs]def assert_trigger(library, session, protocol):
 """Asserts software or hardware trigger.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param protocol: Trigger protocol to use during assertion. (Constants.PROT*)
 """
 library.viAssertTrigger(session, protocol)

[docs]def assert_utility_signal(library, session, line):
 """Asserts or deasserts the specified utility bus signal.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param line: specifies the utility bus signal to assert. (Constants.UTIL_ASSERT*)
 """
 library.viAssertUtilSignal(session, line)

[docs]def buffer_read(library, session, count):
 """Reads data from device or interface through the use of a formatted I/O read buffer.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param count: Number of bytes to be read.
 :return: data read.
 :rtype: bytes
 """
 buffer = create_string_buffer(count)
 return_count = ViUInt32()
 library.viBufRead(session, buffer, count, byref(return_count))
 return buffer.raw[:return_count.value]

[docs]def buffer_write(library, session, data):
 """Writes data to a formatted I/O write buffer synchronously.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param data: data to be written.
 :type data: bytes
 :return: number of written bytes.
 """

 return_count = ViUInt32()
 # [ViSession, ViBuf, ViUInt32, ViPUInt32]
 library.viBufWrite(session, data, len(data), byref(return_count))
 return return_count.value

[docs]def clear(library, session):
 """Clears a device.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 """
 library.viClear(session)

[docs]def close(library, session):
 """Closes the specified session, event, or find list.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session, event, or find list.
 """
 library.viClose(session)

[docs]def disable_event(library, session, event_type, mechanism):
 """Disables notification of the specified event type(s) via the specified mechanism(s).

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param event_type: Logical event identifier.
 :param mechanism: Specifies event handling mechanisms to be disabled.
 (Constants.QUEUE, .Handler, .SUSPEND_HNDLR, .ALL_MECH)
 """
 library.viDisableEvent(session, event_type, mechanism)

[docs]def discard_events(library, session, event_type, mechanism):
 """Discards event occurrences for specified event types and mechanisms in a session.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param event_type: Logical event identifier.
 :param mechanism: Specifies event handling mechanisms to be disabled.
 (Constants.QUEUE, .Handler, .SUSPEND_HNDLR, .ALL_MECH)
 """
 library.viDiscardEvents(session, event_type, mechanism)

[docs]def enable_event(library, session, event_type, mechanism, context=VI_NULL):
 """Enable event occurrences for specified event types and mechanisms in a session.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param event_type: Logical event identifier.
 :param mechanism: Specifies event handling mechanisms to be disabled.
 (Constants.QUEUE, .Handler, .SUSPEND_HNDLR)
 :param context:
 """
 context = VI_NULL # according to spec VPP-4.3, section 3.7.3.1
 library.viEnableEvent(session, event_type, mechanism, context)

[docs]def find_next(library, find_list):
 """Returns the next resource from the list of resources found during a previous call to find_resources().

 :param library: the visa library wrapped by ctypes.
 :param find_list: Describes a find list. This parameter must be created by find_resources().
 :return: Returns a string identifying the location of a device.
 :rtype: unicode (Py2) or str (Py3)
 """
 instrument_description = create_string_buffer(VI_FIND_BUFLEN)
 library.viFindNext(find_list, instrument_description)
 return buffer_to_text(instrument_description)

[docs]def find_resources(library, session, query):
 """Queries a VISA system to locate the resources associated with a specified interface.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session (unused, just to uniform signatures).
 :param query: A regular expression followed by an optional logical expression. Use '?*' for all.
 :return: find_list, return_counter, instrument_description
 :rtype: ViFindList, int, unicode (Py2) or str (Py3)
 """
 find_list = ViFindList()
 return_counter = ViUInt32()
 instrument_description = create_string_buffer(VI_FIND_BUFLEN)

 # [ViSession, ViString, ViPFindList, ViPUInt32, ViAChar]
 # ViString converts from (str, unicode, bytes) to bytes
 library.viFindRsrc(session, query,
 byref(find_list), byref(return_counter),
 instrument_description)
 return find_list, return_counter.value, buffer_to_text(instrument_description)

[docs]def flush(library, session, mask):
 """Manually flushes the specified buffers associated with formatted I/O operations and/or serial communication.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param mask: Specifies the action to be taken with flushing the buffer.
 (Constants.READ*, .WRITE*, .IO*)
 """
 library.viFlush(session, mask)

[docs]def get_attribute(library, session, attribute):
 """Retrieves the state of an attribute.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session, event, or find list.
 :param attribute: Resource attribute for which the state query is made (see Attributes.*)
 :return: The state of the queried attribute for a specified resource.
 :rtype: unicode (Py2) or str (Py3), list or other type
 """

 # FixMe: How to deal with ViBuf?
 datatype = attributes[attribute]
 if datatype == ViString:
 attribute_state = create_string_buffer(256)
 library.viGetAttribute(session, attribute, attribute_state)
 return buffer_to_text(attribute_state)
 elif datatype == ViAUInt8:
 length = get_attribute(library, session, VI_ATTR_USB_RECV_INTR_SIZE)
 attribute_state = (ViUInt8 * length)()
 library.viGetAttribute(session, attribute, byref(attribute_state))
 return list(attribute_state)
 else:
 attribute_state = datatype()
 library.viGetAttribute(session, attribute, byref(attribute_state))
 return attribute_state.value

[docs]def gpib_command(library, session, data):
 """Write GPIB command bytes on the bus.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param data: data tor write.
 :type data: bytes
 :return: Number of written bytes.
 """
 return_count = ViUInt32()

 # [ViSession, ViBuf, ViUInt32, ViPUInt32]
 library.viGpibCommand(session, data, len(data), byref(return_count))
 return return_count.value

[docs]def gpib_control_atn(library, session, mode):
 """Specifies the state of the ATN line and the local active controller state.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param mode: Specifies the state of the ATN line and optionally the local active controller state.
 (Constants.GPIB_ATN*)
 """
 library.viGpibControlATN(session, mode)

[docs]def gpib_control_ren(library, session, mode):
 """Controls the state of the GPIB Remote Enable (REN) interface line, and optionally the remote/local
 state of the device.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param mode: Specifies the state of the REN line and optionally the device remote/local state.
 (Constants.GPIB_REN*)
 """
 library.viGpibControlREN(session, mode)

[docs]def gpib_pass_control(library, session, primary_address, secondary_address):
 """Tell the GPIB device at the specified address to become controller in charge (CIC).

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param primary_address: Primary address of the GPIB device to which you want to pass control.
 :param secondary_address: Secondary address of the targeted GPIB device.
 If the targeted device does not have a secondary address,
 this parameter should contain the value Constants.NO_SEC_ADDR.
 """
 library.viGpibPassControl(session, primary_address, secondary_address)

[docs]def gpib_send_ifc(library, session):
 """Pulse the interface clear line (IFC) for at least 100 microseconds.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 """
 library.viGpibSendIFC(session)

def read_memory(library, session, space, offset, width, extended=False):
 """Reads in an 8-bit, 16-bit, 32-bit, or 64-bit value from the specified memory space and offset.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param space: Specifies the address space. (Constants.*SPACE*)
 :param offset: Offset (in bytes) of the address or register from which to read.
 :param width: Number of bits to read.
 :param extended: Use 64 bits offset independent of the platform.
 :return: Data read from memory.

 Corresponds to viIn* functions of the visa library.
 """
 if width == 8:
 return in_8(library, session, space, offset, extended)
 elif width == 16:
 return in_16(library, session, space, offset, extended)
 elif width == 32:
 return in_32(library, session, space, offset, extended)
 elif width == 64:
 return in_64(library, session, space, offset, extended)

 raise ValueError('%s is not a valid size. Valid values are 8, 16, 32 or 64' % width)

[docs]def in_8(library, session, space, offset, extended=False):
 """Reads in an 8-bit value from the specified memory space and offset.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param space: Specifies the address space. (Constants.*SPACE*)
 :param offset: Offset (in bytes) of the address or register from which to read.
 :param extended: Use 64 bits offset independent of the platform.
 :return: Data read from memory.
 """
 value_8 = ViUInt8()
 if extended:
 library.viIn8Ex(session, space, offset, byref(value_8))
 else:
 library.viIn8(session, space, offset, byref(value_8))
 return value_8.value

[docs]def in_16(library, session, space, offset, extended=False):
 """Reads in an 16-bit value from the specified memory space and offset.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param space: Specifies the address space. (Constants.*SPACE*)
 :param offset: Offset (in bytes) of the address or register from which to read.
 :param extended: Use 64 bits offset independent of the platform.
 :return: Data read from memory.
 """
 value_16 = ViUInt16()
 if extended:
 library.viIn16Ex(session, space, offset, byref(value_16))
 else:
 library.viIn16(session, space, offset, byref(value_16))
 return value_16.value

[docs]def in_32(library, session, space, offset, extended=False):
 """Reads in an 32-bit value from the specified memory space and offset.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param space: Specifies the address space. (Constants.*SPACE*)
 :param offset: Offset (in bytes) of the address or register from which to read.
 :param extended: Use 64 bits offset independent of the platform.
 :return: Data read from memory.
 """
 value_32 = ViUInt32()
 if extended:
 library.viIn32Ex(session, space, offset, byref(value_32))
 else:
 library.viIn32(session, space, offset, byref(value_32))
 return value_32.value

def in_64(library, session, space, offset, extended=False):
 """Reads in an 64-bit value from the specified memory space and offset.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param space: Specifies the address space. (Constants.*SPACE*)
 :param offset: Offset (in bytes) of the address or register from which to read.
 :param extended: Use 64 bits offset independent of the platform.
 :return: Data read from memory.
 """
 value_64 = ViUInt64()
 if extended:
 library.viIn64Ex(session, space, offset, byref(value_64))
 else:
 library.viIn64(session, space, offset, byref(value_64))
 return value_64.value

[docs]def install_handler(library, session, event_type, handler, user_handle):
 """Installs handlers for event callbacks.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param event_type: Logical event identifier.
 :param handler: Interpreted as a valid reference to a handler to be installed by a client application.
 :param user_handle: A value specified by an application that can be used for identifying handlers
 uniquely for an event type.
 :returns: a handler descriptor which consists of three elements:
 - handler (a python callable)
 - user handle (a ctypes object)
 - ctypes handler (ctypes object wrapping handler)
 """
 if user_handle is None:
 converted_user_handle = None
 else:
 if isinstance(user_handle, int):
 converted_user_handle = c_long(user_handle)
 elif isinstance(user_handle, float):
 converted_user_handle = c_double(user_handle)
 elif isinstance(user_handle, str):
 converted_user_handle = create_string_buffer(user_handle)
 elif isinstance(user_handle, list):
 for element in user_handle:
 if not isinstance(element, int):
 converted_user_handle = \
 (c_double * len(user_handle))(tuple(user_handle))
 break
 else:
 converted_user_handle = \
 (c_long * len(user_handle))(*tuple(user_handle))
 else:
 raise TypeError("Type not allowed as user handle: %s" % type(user_handle))

 set_user_handle_type(library, converted_user_handle)
 converted_handler = ViHndlr(handler)
 if user_handle is None:
 library.viInstallHandler(session, event_type, converted_handler, None)
 else:
 library.viInstallHandler(session, event_type, converted_handler,
 byref(converted_user_handle))

 return handler, converted_user_handle, converted_handler

[docs]def lock(library, session, lock_type, timeout, requested_key=None):
 """Establishes an access mode to the specified resources.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param lock_type: Specifies the type of lock requested, either Constants.EXCLUSIVE_LOCK or Constants.SHARED_LOCK.
 :param timeout: Absolute time period (in milliseconds) that a resource waits to get unlocked by the
 locking session before returning an error.
 :param requested_key: This parameter is not used and should be set to VI_NULL when lockType is VI_EXCLUSIVE_LOCK.
 :return: access_key that can then be passed to other sessions to share the lock.
 """
 if lock_type == VI_EXCLUSIVE_LOCK:
 requested_key = None
 access_key = None
 else:
 access_key = create_string_buffer(256)
 library.viLock(session, lock_type, timeout, requested_key, access_key)
 return access_key

[docs]def map_address(library, session, map_space, map_base, map_size,
 access=VI_FALSE, suggested=VI_NULL):
 """Maps the specified memory space into the process's address space.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param map_space: Specifies the address space to map. (Constants.*SPACE*)
 :param map_base: Offset (in bytes) of the memory to be mapped.
 :param map_size: Amount of memory to map (in bytes).
 :param access:
 :param suggested: If not Constants.NULL (0), the operating system attempts to map the memory to the address
 specified in suggested. There is no guarantee, however, that the memory will be mapped to
 that address. This operation may map the memory into an address region different from
 suggested.

 :return: Address in your process space where the memory was mapped.
 """
 access = VI_FALSE
 address = ViAddr()
 library.viMapAddress(session, map_space, map_base, map_size, access,
 suggested, byref(address))
 return address

[docs]def map_trigger(library, session, trigger_source, trigger_destination, mode):
 """Map the specified trigger source line to the specified destination line.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param trigger_source: Source line from which to map. (Constants.TRIG*)
 :param trigger_destination: Destination line to which to map. (Constants.TRIG*)
 :param mode:
 """
 library.viMapTrigger(session, trigger_source, trigger_destination, mode)

[docs]def memory_allocation(library, session, size, extended=False):
 """Allocates memory from a resource's memory region.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param size: Specifies the size of the allocation.
 :param extended: Use 64 bits offset independent of the platform.
 :return: Returns the offset of the allocated memory.
 """
 offset = ViBusAddress()
 if extended:
 library.viMemAllocEx(session, size, byref(offset))
 else:
 library.viMemAlloc(session, size, byref(offset))
 return offset

[docs]def memory_free(library, session, offset, extended=False):
 """Frees memory previously allocated using the memory_allocation() operation.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param offset: Offset of the memory to free.
 :param extended: Use 64 bits offset independent of the platform.
 """
 if extended:
 library.viMemFreeEx(session, offset)
 else:
 library.viMemFree(session, offset)

[docs]def move(library, session, source_space, source_offset, source_width, destination_space,
 destination_offset, destination_width, length):
 """Moves a block of data.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param source_space: Specifies the address space of the source.
 :param source_offset: Offset of the starting address or register from which to read.
 :param source_width: Specifies the data width of the source.
 :param destination_space: Specifies the address space of the destination.
 :param destination_offset: Offset of the starting address or register to which to write.
 :param destination_width: Specifies the data width of the destination.
 :param length: Number of elements to transfer, where the data width of the elements to transfer
 is identical to the source data width.
 """
 library.viMove(session, source_space, source_offset, source_width,
 destination_space, destination_offset,
 destination_width, length)

[docs]def move_asynchronously(library, session, source_space, source_offset, source_width,
 destination_space, destination_offset,
 destination_width, length):
 """Moves a block of data asynchronously.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param source_space: Specifies the address space of the source.
 :param source_offset: Offset of the starting address or register from which to read.
 :param source_width: Specifies the data width of the source.
 :param destination_space: Specifies the address space of the destination.
 :param destination_offset: Offset of the starting address or register to which to write.
 :param destination_width: Specifies the data width of the destination.
 :param length: Number of elements to transfer, where the data width of the elements to transfer
 is identical to the source data width.
 :return: Job identifier of this asynchronous move operation.
 """
 job_id = ViJobId()
 library.viMoveAsync(session, source_space, source_offset, source_width,
 destination_space, destination_offset,
 destination_width, length, byref(job_id))
 return job_id

def move_in(library, session, space, offset, length, width, extended=False):
 """Moves a block of data to local memory from the specified address space and offset.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param space: Specifies the address space. (Constants.*SPACE*)
 :param offset: Offset (in bytes) of the address or register from which to read.
 :param length: Number of elements to transfer, where the data width of the elements to transfer
 is identical to the source data width.
 :param width: Number of bits to read per element.
 :param extended: Use 64 bits offset independent of the platform.
 """
 if width == 8:
 return move_in_8(library, session, space, offset, length, extended)
 elif width == 16:
 return move_in_16(library, session, space, offset, length, extended)
 elif width == 32:
 return move_in_32(library, session, space, offset, length, extended)
 elif width == 64:
 return move_in_64(library, session, space, offset, length, extended)

 raise ValueError('%s is not a valid size. Valid values are 8, 16, 32 or 64' % width)

[docs]def move_in_8(library, session, space, offset, length, extended=False):
 """Moves an 8-bit block of data from the specified address space and offset to local memory.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param space: Specifies the address space. (Constants.*SPACE*)
 :param offset: Offset (in bytes) of the address or register from which to read.
 :param length: Number of elements to transfer, where the data width of the elements to transfer
 is identical to the source data width.
 :param extended: Use 64 bits offset independent of the platform.
 :return: Data read from bus.

 Corresponds to viMoveIn8 functions of the visa library.
 """
 buffer_8 = (ViUInt8 * length)()
 if extended:
 library.viMoveIn8Ex(session, space, offset, length, buffer_8)
 else:
 library.viMoveIn8(session, space, offset, length, buffer_8)
 return list(buffer_8)

[docs]def move_in_16(library, session, space, offset, length, extended=False):
 """Moves an 16-bit block of data from the specified address space and offset to local memory.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param space: Specifies the address space. (Constants.*SPACE*)
 :param offset: Offset (in bytes) of the address or register from which to read.
 :param length: Number of elements to transfer, where the data width of the elements to transfer
 is identical to the source data width.
 :param extended: Use 64 bits offset independent of the platform.
 :return: Data read from bus.

 Corresponds to viMoveIn16 functions of the visa library.
 """
 buffer_16 = (ViUInt16 * length)()
 if extended:
 library.viMoveIn16Ex(session, space, offset, length, buffer_16)
 else:
 library.viMoveIn16(session, space, offset, length, buffer_16)

 return list(buffer_16)

[docs]def move_in_32(library, session, space, offset, length, extended=False):
 """Moves an 32-bit block of data from the specified address space and offset to local memory.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param space: Specifies the address space. (Constants.*SPACE*)
 :param offset: Offset (in bytes) of the address or register from which to read.
 :param length: Number of elements to transfer, where the data width of the elements to transfer
 is identical to the source data width.
 :param extended: Use 64 bits offset independent of the platform.
 :return: Data read from bus.

 Corresponds to viMoveIn32 functions of the visa library.
 """
 buffer_32 = (ViUInt32 * length)()
 if extended:
 library.viMoveIn32Ex(session, space, offset, length, buffer_32)
 else:
 library.viMoveIn32(session, space, offset, length, buffer_32)

 return list(buffer_32)

def move_in_64(library, session, space, offset, length, extended=False):
 """Moves an 64-bit block of data from the specified address space and offset to local memory.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param space: Specifies the address space. (Constants.*SPACE*)
 :param offset: Offset (in bytes) of the address or register from which to read.
 :param length: Number of elements to transfer, where the data width of the elements to transfer
 is identical to the source data width.
 :param extended: Use 64 bits offset independent of the platform.
 :return: Data read from bus.

 Corresponds to viMoveIn32 functions of the visa library.
 """
 buffer_64 = (ViUInt64 * length)()
 if extended:
 library.viMoveIn64Ex(session, space, offset, length, buffer_64)
 else:
 library.viMoveIn64(session, space, offset, length, buffer_64)

 return list(buffer_64)

def move_out(library, session, space, offset, length, data, width, extended=False):
 """Moves a block of data from local memory to the specified address space and offset.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param space: Specifies the address space. (Constants.*SPACE*)
 :param offset: Offset (in bytes) of the address or register from which to read.
 :param length: Number of elements to transfer, where the data width of the elements to transfer
 is identical to the source data width.
 :param data: Data to write to bus.
 :param width: Number of bits to read per element.
 :param extended: Use 64 bits offset independent of the platform.
 """
 if width == 8:
 return move_out_8(library, session, space, offset, length, data, extended)
 elif width == 16:
 return move_out_16(library, session, space, offset, length, data, extended)
 elif width == 32:
 return move_out_32(library, session, space, offset, length, data, extended)
 elif width == 64:
 return move_out_64(library, session, space, offset, length, data, extended)

 raise ValueError('%s is not a valid size. Valid values are 8, 16, 32 or 64' % width)

[docs]def move_out_8(library, session, space, offset, length, data, extended=False):
 """Moves an 8-bit block of data from local memory to the specified address space and offset.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param space: Specifies the address space. (Constants.*SPACE*)
 :param offset: Offset (in bytes) of the address or register from which to read.
 :param length: Number of elements to transfer, where the data width of the elements to transfer
 is identical to the source data width.
 :param data: Data to write to bus.
 :param extended: Use 64 bits offset independent of the platform.

 Corresponds to viMoveOut8 functions of the visa library.
 """
 converted_buffer = (ViUInt8 * length)(*tuple(data))
 if extended:
 library.viMoveOut8Ex(session, space, offset, length, converted_buffer)
 else:
 library.viMoveOut8(session, space, offset, length, converted_buffer)

[docs]def move_out_16(library, session, space, offset, length, data, extended=False):
 """Moves an 16-bit block of data from local memory to the specified address space and offset.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param space: Specifies the address space. (Constants.*SPACE*)
 :param offset: Offset (in bytes) of the address or register from which to read.
 :param length: Number of elements to transfer, where the data width of the elements to transfer
 is identical to the source data width.
 :param data: Data to write to bus.
 :param extended: Use 64 bits offset independent of the platform.

 Corresponds to viMoveOut16 functions of the visa library.
 """
 converted_buffer = (ViUInt16 * length)(*tuple(data))
 if extended:
 library.viMoveOut16Ex(session, space, offset, length, converted_buffer)
 else:
 library.viMoveOut16(session, space, offset, length, converted_buffer)

[docs]def move_out_32(library, session, space, offset, length, data, extended=False):
 """Moves an 32-bit block of data from local memory to the specified address space and offset.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param space: Specifies the address space. (Constants.*SPACE*)
 :param offset: Offset (in bytes) of the address or register from which to read.
 :param length: Number of elements to transfer, where the data width of the elements to transfer
 is identical to the source data width.
 :param data: Data to write to bus.
 :param extended: Use 64 bits offset independent of the platform.

 Corresponds to viMoveOut32 functions of the visa library.
 """
 converted_buffer = (ViUInt32 * length)(*tuple(data))
 if extended:
 library.viMoveOut32Ex(session, space, offset, length, converted_buffer)
 else:
 library.viMoveOut32(session, space, offset, length, converted_buffer)

def move_out_64(library, session, space, offset, length, data, extended=False):
 """Moves an 64-bit block of data from local memory to the specified address space and offset.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param space: Specifies the address space. (Constants.*SPACE*)
 :param offset: Offset (in bytes) of the address or register from which to read.
 :param length: Number of elements to transfer, where the data width of the elements to transfer
 is identical to the source data width.
 :param data: Data to write to bus.
 :param extended: Use 64 bits offset independent of the platform.

 Corresponds to viMoveOut64 functions of the visa library.
 """
 converted_buffer = (ViUInt64 * length)(*tuple(data))
 if extended:
 library.viMoveOut64Ex(session, space, offset, length, converted_buffer)
 else:
 library.viMoveOut64(session, space, offset, length, converted_buffer)

[docs]def open(library, session, resource_name, access_mode=VI_NO_LOCK, open_timeout=VI_TMO_IMMEDIATE):
 """Opens a session to the specified resource.

 :param library: the visa library wrapped by ctypes.
 :param session: Resource Manager session (should always be a session returned from open_default_resource_manager()).
 :param resource_name: Unique symbolic name of a resource.
 :param access_mode: Specifies the mode by which the resource is to be accessed. (Constants.NULL or Constants.*LOCK*)
 :param open_timeout: Specifies the maximum time period (in milliseconds) that this operation waits
 before returning an error.
 :return: Unique logical identifier reference to a session.
 """
 out_session = ViSession()

 # [ViSession, ViRsrc, ViAccessMode, ViUInt32, ViPSession]
 # ViRsrc converts from (str, unicode, bytes) to bytes
 library.viOpen(session, resource_name, access_mode, open_timeout, byref(out_session))
 return out_session.value

[docs]def open_default_resource_manager(library):
 """This function returns a session to the Default Resource Manager resource.

 :param library: the visa library wrapped by ctypes.
 :return: Unique logical identifier to a Default Resource Manager session.
 """
 session = ViSession()
 library.viOpenDefaultRM(byref(session))
 return session.value

def write_memory(library, session, space, offset, data, width, extended=False):
 """Write in an 8-bit, 16-bit, 32-bit, value to the specified memory space and offset.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param space: Specifies the address space. (Constants.*SPACE*)
 :param offset: Offset (in bytes) of the address or register from which to read.
 :param data: Data to write to bus.
 :param width: Number of bits to read.
 :param extended: Use 64 bits offset independent of the platform.

 Corresponds to viOut* functions of the visa library.
 """
 if width == 8:
 return out_8(library, session, space, offset, data, extended)
 elif width == 16:
 return out_16(library, session, space, offset, data, extended)
 elif width == 32:
 return out_32(library, session, space, offset, data, extended)

 raise ValueError('%s is not a valid size. Valid values are 8, 16 or 32' % width)

[docs]def out_8(library, session, space, offset, data, extended=False):
 """Write in an 8-bit value from the specified memory space and offset.
 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param space: Specifies the address space. (Constants.*SPACE*)
 :param offset: Offset (in bytes) of the address or register from which to read.
 :param data: Data to write to bus.
 :param extended: Use 64 bits offset independent of the platform.

 Corresponds to viOut8 functions of the visa library.
 """
 if extended:
 library.viOut8Ex(session, space, offset, data)
 else:
 library.viOut8(session, space, offset, data)

[docs]def out_16(library, session, space, offset, data, extended=False):
 """Write in an 16-bit value from the specified memory space and offset.
 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param space: Specifies the address space. (Constants.*SPACE*)
 :param offset: Offset (in bytes) of the address or register from which to read.
 :param data: Data to write to bus.
 :param extended: Use 64 bits offset independent of the platform.

 Corresponds to viOut16 functions of the visa library.
 """
 if extended:
 library.viOut16Ex(session, space, offset, data, extended=False)
 else:
 library.viOut16(session, space, offset, data, extended=False)

[docs]def out_32(library, session, space, offset, data, extended=False):
 """Write in an 32-bit value from the specified memory space and offset.
 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param space: Specifies the address space. (Constants.*SPACE*)
 :param offset: Offset (in bytes) of the address or register from which to read.
 :param data: Data to write to bus.
 :param extended: Use 64 bits offset independent of the platform.

 Corresponds to viOut32 functions of the visa library.
 """
 if extended:
 library.viOut32Ex(session, space, offset, data)
 else:
 library.viOut32(session, space, offset, data)

def out_64(library, session, space, offset, data, extended=False):
 """Write in an 64-bit value from the specified memory space and offset.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param space: Specifies the address space. (Constants.*SPACE*)
 :param offset: Offset (in bytes) of the address or register from which to read.
 :param data: Data to write to bus.
 :param extended: Use 64 bits offset independent of the platform.

 Corresponds to viOut64 functions of the visa library.
 """
 if extended:
 library.viOut64Ex(session, space, offset, data)
 else:
 library.viOut64(session, space, offset, data)

[docs]def parse_resource(library, session, resource_name):
 """Parse a resource string to get the interface information.

 :param library: the visa library wrapped by ctypes.
 :param session: Resource Manager session (should always be the Default Resource Manager for VISA
 returned from open_default_resource_manager()).
 :param resource_name: Unique symbolic name of a resource.
 :return: Resource information with interface type and board number.
 :rtype: :class:ResourceInfo
 """
 interface_type = ViUInt16()
 interface_board_number = ViUInt16()

 # [ViSession, ViRsrc, ViPUInt16, ViPUInt16]
 # ViRsrc converts from (str, unicode, bytes) to bytes
 library.viParseRsrc(session, resource_name, byref(interface_type),
 byref(interface_board_number))
 return ResourceInfo(interface_type.value, interface_board_number.value,
 None, None, None)

[docs]def parse_resource_extended(library, session, resource_name):
 """Parse a resource string to get extended interface information.

 :param library: the visa library wrapped by ctypes.
 :param session: Resource Manager session (should always be the Default Resource Manager for VISA
 returned from open_default_resource_manager()).
 :param resource_name: Unique symbolic name of a resource.
 :return: Resource information.
 :rtype: :class:ResourceInfo
 """
 interface_type = ViUInt16()
 interface_board_number = ViUInt16()
 resource_class = create_string_buffer(VI_FIND_BUFLEN)
 unaliased_expanded_resource_name = create_string_buffer(VI_FIND_BUFLEN)
 alias_if_exists = create_string_buffer(VI_FIND_BUFLEN)

 # [ViSession, ViRsrc, ViPUInt16, ViPUInt16, ViAChar, ViAChar, ViAChar]
 # ViRsrc converts from (str, unicode, bytes) to bytes
 library.viParseRsrcEx(session, resource_name, byref(interface_type),
 byref(interface_board_number), resource_class,
 unaliased_expanded_resource_name,
 alias_if_exists)

 res = [buffer_to_text(val)
 for val in (resource_class,
 unaliased_expanded_resource_name,
 alias_if_exists)]

 if res[-1] == '':
 res[-1] = None

 return ResourceInfo(interface_type.value, interface_board_number.value, *res)

def peek(library, session, address, width):
 """Read an 8, 16 or 32-bit value from the specified address.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param address: Source address to read the value.
 :param width: Number of bits to read.
 :return: Data read from bus.
 :rtype: bytes
 """

 if width == 8:
 return peek_8(library, session, address)
 elif width == 16:
 return peek_16(library, session, address)
 elif width == 32:
 return peek_32(library, session, address)
 elif width == 64:
 return peek_64(library, session, address)

 raise ValueError('%s is not a valid size. Valid values are 8, 16, 32 or 64' % width)

[docs]def peek_8(library, session, address):
 """Read an 8-bit value from the specified address.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param address: Source address to read the value.
 :return: Data read from bus.
 :rtype: bytes
 """
 value_8 = ViUInt8()
 library.viPeek8(session, address, byref(value_8))
 return value_8.value

[docs]def peek_16(library, session, address):
 """Read an 16-bit value from the specified address.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param address: Source address to read the value.
 :return: Data read from bus.
 :rtype: bytes
 """
 value_16 = ViUInt16()
 library.viPeek16(session, address, byref(value_16))
 return value_16.value

[docs]def peek_32(library, session, address):
 """Read an 32-bit value from the specified address.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param address: Source address to read the value.
 :return: Data read from bus.
 :rtype: bytes
 """
 value_32 = ViUInt32()
 library.viPeek32(session, address, byref(value_32))
 return value_32.value

def peek_64(library, session, address):
 """Read an 64-bit value from the specified address.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param address: Source address to read the value.
 :return: Data read from bus.
 :rtype: bytes
 """
 value_64 = ViUInt64()
 library.viPeek64(session, address, byref(value_64))
 return value_64.value

def poke(library, session, address, width, data):
 """Writes an 8, 16 or 32-bit value from the specified address.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param address: Source address to read the value.
 :param width: Number of bits to read.
 :param data: Data to be written to the bus.
 """

 if width == 8:
 return poke_8(library, session, address, data)
 elif width == 16:
 return poke_16(library, session, address, data)
 elif width == 32:
 return poke_32(library, session, address, data)

 raise ValueError('%s is not a valid size. Valid values are 8, 16 or 32' % width)

[docs]def poke_8(library, session, address, data):
 """Write an 8-bit value from the specified address.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param address: Source address to read the value.
 :param data: value to be written to the bus.
 :return: Data read from bus.
 """
 library.viPoke8(session, address, data)

[docs]def poke_16(library, session, address, data):
 """Write an 16-bit value from the specified address.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param address: Source address to read the value.
 :param data: value to be written to the bus.
 :return: Data read from bus.
 """
 library.viPoke16(session, address, data)

[docs]def poke_32(library, session, address, data):
 """Write an 32-bit value from the specified address.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param address: Source address to read the value.
 :param data: value to be written to the bus.
 :return: Data read from bus.
 """
 library.viPoke32(session, address, data)

def poke_64(library, session, address, data):
 """Write an 64-bit value from the specified address.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param address: Source address to read the value.
 :param data: value to be written to the bus.
 :return: Data read from bus.
 """
 library.viPoke64(session, address, data)

[docs]def read(library, session, count):
 """Reads data from device or interface synchronously.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param count: Number of bytes to be read.
 :return: data read.
 :rtype: bytes
 """
 buffer = create_string_buffer(count)
 return_count = ViUInt32()
 library.viRead(session, buffer, count, byref(return_count))
 return buffer.raw[:return_count.value]

[docs]def read_asynchronously(library, session, count):
 """Reads data from device or interface asynchronously.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param count: Number of bytes to be read.
 :return: (ctypes buffer with result, jobid)
 """
 buffer = create_string_buffer(count)
 job_id = ViJobId()
 library.viReadAsync(session, buffer, count, byref(job_id))
 return buffer, job_id

[docs]def read_stb(library, session):
 """Reads a status byte of the service request.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :return: Service request status byte.
 """
 status = ViUInt16()
 library.viReadSTB(session, byref(status))
 return status.value

[docs]def read_to_file(library, session, filename, count):
 """Read data synchronously, and store the transferred data in a file.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param filename: Name of file to which data will be written.
 :param count: Number of bytes to be read.
 :return: Number of bytes actually transferred.
 """
 return_count = ViUInt32()
 library.viReadToFile(session, filename, count, return_count)
 return return_count

[docs]def set_attribute(library, session, attribute, attribute_state):
 """Sets the state of an attribute.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param attribute: Attribute for which the state is to be modified. (Attributes.*)
 :param attribute_state: The state of the attribute to be set for the specified object.
 """
 library.viSetAttribute(session, attribute, attribute_state)

[docs]def set_buffer(library, session, mask, size):
 """Sets the size for the formatted I/O and/or low-level I/O communication buffer(s).

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param mask: Specifies the type of buffer. (Constants.READ_BUF, .WRITE_BUF, .IO_IN_BUF, .IO_OUT_BUF)
 :param size: The size to be set for the specified buffer(s).
 """
 library.viSetBuf(session, mask, size)

[docs]def status_description(library, session, status):
 """Returns a user-readable description of the status code passed to the operation.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param status: Status code to interpret.
 :return: The user-readable string interpretation of the status code passed to the operation.
 :rtype: unicode (Py2) or str (Py3)
 """
 description = create_string_buffer(256)
 library.viStatusDesc(session, status, description)
 return buffer_to_text(description)

[docs]def terminate(library, session, degree, job_id):
 """Requests a VISA session to terminate normal execution of an operation.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param degree: Constants.NULL
 :param job_id: Specifies an operation identifier.
 """
 library.viTerminate(session, degree, job_id)

[docs]def uninstall_handler(library, session, event_type, handler, user_handle=None):
 """Uninstalls handlers for events.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param event_type: Logical event identifier.
 :param handler: Interpreted as a valid reference to a handler to be uninstalled by a client application.
 :param user_handle: A value specified by an application that can be used for identifying handlers
 uniquely in a session for an event.
 """
 library.viUninstallHandler(session, event_type, handler, byref(user_handle))

[docs]def unlock(library, session):
 """Relinquishes a lock for the specified resource.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 """
 library.viUnlock(session)

[docs]def unmap_address(library, session):
 """Unmaps memory space previously mapped by map_address().

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 """
 library.viUnmapAddress(session)

[docs]def unmap_trigger(library, session, trigger_source, trigger_destination):
 """Undo a previous map from the specified trigger source line to the specified destination line.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param trigger_source: Source line used in previous map. (Constants.TRIG*)
 :param trigger_destination: Destination line used in previous map. (Constants.TRIG*)
 """
 library.viUnmapTrigger(session, trigger_source, trigger_destination)

[docs]def usb_control_in(library, session, request_type_bitmap_field, request_id, request_value,
 index, length=0):
 """Performs a USB control pipe transfer from the device.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param request_type_bitmap_field: bmRequestType parameter of the setup stage of a USB control transfer.
 :param request_id: bRequest parameter of the setup stage of a USB control transfer.
 :param request_value: wValue parameter of the setup stage of a USB control transfer.
 :param index: wIndex parameter of the setup stage of a USB control transfer.
 This is usually the index of the interface or endpoint.
 :param length: wLength parameter of the setup stage of a USB control transfer.
 This value also specifies the size of the data buffer to receive the data from the
 optional data stage of the control transfer.
 :return: The data buffer that receives the data from the optional data stage of the control transfer.
 :rtype: bytes
 """
 buffer = create_string_buffer(length)
 return_count = ViUInt16()
 library.viUsbControlIn(session, request_type_bitmap_field, request_id,
 request_value, index, length, buffer,
 byref(return_count))
 return buffer.raw[:return_count.value]

[docs]def usb_control_out(library, session, request_type_bitmap_field, request_id, request_value,
 index, data=""):
 """Performs a USB control pipe transfer to the device.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param request_type_bitmap_field: bmRequestType parameter of the setup stage of a USB control transfer.
 :param request_id: bRequest parameter of the setup stage of a USB control transfer.
 :param request_value: wValue parameter of the setup stage of a USB control transfer.
 :param index: wIndex parameter of the setup stage of a USB control transfer.
 This is usually the index of the interface or endpoint.
 :param data: The data buffer that sends the data in the optional data stage of the control transfer.
 """
 length = len(data)
 library.viUsbControlOut(session, request_type_bitmap_field, request_id,
 request_value, index, length, data)

[docs]def vxi_command_query(library, session, mode, command):
 """Sends the device a miscellaneous command or query and/or retrieves the response to a previous query.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param mode: Specifies whether to issue a command and/or retrieve a response. (Constants.VXI_CMD*, .VXI_RESP*)
 :param command: The miscellaneous command to send.
 :return: The response retrieved from the device.
 """
 response = ViUInt32()
 library.viVxiCommandQuery(session, mode, command, byref(response))
 return response.value

[docs]def wait_on_event(library, session, in_event_type, timeout):
 """Waits for an occurrence of the specified event for a given session.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param in_event_type: Logical identifier of the event(s) to wait for.
 :param timeout: Absolute time period in time units that the resource shall wait for a specified event to
 occur before returning the time elapsed error. The time unit is in milliseconds.
 :return: Logical identifier of the event actually received, A handle specifying the unique occurrence of an event.
 """
 out_event_type = ViEventType()
 out_context = ViEvent()
 library.viWaitOnEvent(session, in_event_type, timeout,
 byref(out_event_type), byref(out_context))
 return out_event_type.value, out_context

[docs]def write(library, session, data):
 """Writes data to device or interface synchronously.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param data: data to be written.
 :type data: str
 :return: Number of bytes actually transferred.
 """
 return_count = ViUInt32()
 # [ViSession, ViBuf, ViUInt32, ViPUInt32]
 library.viWrite(session, data, len(data), byref(return_count))
 return return_count.value

[docs]def write_asynchronously(library, session, data):
 """Writes data to device or interface asynchronously.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param data: data to be written.
 :return: Job ID of this asynchronous write operation.
 """
 job_id = ViJobId()
 # [ViSession, ViBuf, ViUInt32, ViPJobId]
 library.viWriteAsync(session, data, len(data), byref(job_id))
 return job_id

[docs]def write_from_file(library, session, filename, count):
 """Take data from a file and write it out synchronously.

 :param library: the visa library wrapped by ctypes.
 :param session: Unique logical identifier to a session.
 :param filename: Name of file from which data will be read.
 :param count: Number of bytes to be written.
 :return: Number of bytes actually transferred.
 """
 return_count = ViUInt32()
 library.viWriteFromFile(session, filename, count, return_count)
 return return_count

To be deprecated in PyVISA 1.6
All these functions are easy to replace by Python equivalents.

[docs]def set_cdecl_signatures(clibrary, errcheck=None):
 """Set the signatures of visa functions requiring a cdecl calling convention.

 .. note: This function and the support for string formatting operations in the
 VISA library will be removed in PyVISA 1.6. as these functions can be
 easily replaced by Python equivalents.

 :param clibrary: the visa library wrapped by ctypes.
 :type clibrary: ctypes.CDLL
 :param errcheck: error checking callable used for visa functions that return
 ViStatus.
 It should be take three areguments (result, func, arguments).
 See errcheck in ctypes.
 """
 assert isinstance(clibrary, CDLL)

 if not hasattr(clibrary, '_functions'):
 clibrary._functions = []

 def _applier(restype, errcheck_):
 def _internal(function_name, argtypes, maybe_missing=False):
 clibrary._functions.append(function_name)
 set_signature(clibrary, function_name, argtypes, restype, errcheck_, maybe_missing)
 return _internal

 apply = _applier(ViStatus, errcheck)

 apply("viSPrintf", [ViSession, ViPBuf, ViString])
 apply("viSScanf", [ViSession, ViBuf, ViString])
 apply("viScanf", [ViSession, ViString])
 apply("viPrintf", [ViSession, ViString])
 apply("viQueryf", [ViSession, ViString, ViString])

convert_argument_list is used for VISA routines with variable argument list,
which means that also the types are unknown. Therefore I convert the Python
types to well-defined ctypes types.
#
Attention: This means that only C doubles, C long ints, and strings can be
used in format strings! No "float"s, no "long doubles", no "int"s etc.
Further, only floats, integers and strings can be passed to printf and scanf,
but neither unicode strings nor sequence types.

def convert_argument_list(original_arguments):
 """Converts a Python arguments list to the equivalent ctypes list.

 :param original_arguments: a sequence type with the arguments that should be
 used with ctypes.

 :return: a tuple with the ctypes version of the argument list.
 """

 converted_arguments = []
 for argument in original_arguments:
 if isinstance(argument, float):
 converted_arguments.append(c_double(argument))
 elif isinstance(argument, int):
 converted_arguments.append(c_long(argument))
 elif isinstance(argument, str):
 converted_arguments.append(argument)
 else:
 raise TypeError("Invalid type in scanf/printf: %s" % type(argument))
 return tuple(converted_arguments)

def convert_to_byref(byvalue_arguments, buffer_length):
 """Converts a list of ctypes objects to a tuple with ctypes references
 (pointers) to them, for use in scanf-like functions.

 :param byvalue_arguments: a list (sic!) with the original arguments. They must
 be simple ctypes objects or Python strings. If there are Python
 strings, they are converted in place to ctypes buffers of the same
 length and same contents.
 :param buffer_length: minimal length of ctypes buffers generated from Python
 strings.

 :returns: a tuple with the by-references arguments.
 """

 converted_arguments = []
 for i in range(len(byvalue_arguments)):
 if isinstance(byvalue_arguments[i], str):
 byvalue_arguments[i] = \
 create_string_buffer(byvalue_arguments[i],
 max(len(byvalue_arguments[i]) + 1,
 buffer_length))
 converted_arguments.append(byvalue_arguments[i])
 elif isinstance(byvalue_arguments[i], (c_long, c_double)):
 converted_arguments.append(byref(byvalue_arguments[i]))
 else:
 raise TypeError("Invalid type in scanf: %s" % type(byvalue_arguments[i]))
 return tuple(converted_arguments)

def construct_return_tuple(original_ctypes_sequence):
 """Generate a return value for queryf(), scanf(), and sscanf() out of the
 list of ctypes objects.

 :param original_ctypes_sequence: a sequence of ctypes objects, i.e. c_long,
 c_double, and ctypes strings.

 :returns: The pythonic variants of the ctypes objects, in a form
 suitable to be returned by a function: None if empty, single value, or
 tuple of all values.
 """

 length = len(original_ctypes_sequence)
 if length == 0:
 return None
 elif length == 1:
 return original_ctypes_sequence[0].value
 else:
 return tuple([argument.value for argument in original_ctypes_sequence])

def printf(clibrary, session, write_format, *args):
 assert isinstance(clibrary, _ctypes.CDLL)
 clibrary.viPrintf(session, write_format, *convert_argument_list(args))

def queryf(clibrary, session, write_format, read_format, write_args, *read_args, **keyw):
 assert isinstance(clibrary, _ctypes.CDLL)
 maximal_string_length = keyw.get("maxmial_string_length", 1024)
 argument_list = list(convert_argument_list(read_args))
 if write_args is None: write_args = ()
 clibrary.viQueryf(session, write_format, read_format,
 *(convert_argument_list(write_args) + convert_to_byref(argument_list, maximal_string_length)))
 return construct_return_tuple(argument_list)

FixMe: I have to test whether the results are really written to
"argument_list" rather than only to a local copy within "viScanf".

def scanf(clibrary, session, read_format, *args, **keyw):
 assert isinstance(clibrary, _ctypes.CDLL)
 maximal_string_length = keyw.get("maxmial_string_length", 1024)
 argument_list = list(convert_argument_list(args))
 clibrary.viScanf(session, read_format, *convert_to_byref(argument_list, maximal_string_length))
 return construct_return_tuple(argument_list)

def sprintf(clibrary, session, write_format, *args, **keyw):
 assert isinstance(clibrary, _ctypes.CDLL)
 buffer = create_string_buffer(keyw.get("buffer_length", 1024))
 clibrary.viSPrintf(session, buffer, write_format,
 *convert_argument_list(args))
 return buffer.raw

def sscanf(clibrary, session, buffer, read_format, *args, **keyw):
 assert isinstance(clibrary, _ctypes.CDLL)
 maximal_string_length = keyw.get("maxmial_string_length", 1024)
 argument_list = list(convert_argument_list(args))
 clibrary.viSScanf(session, buffer, read_format, *convert_to_byref(argument_list, maximal_string_length))
 return construct_return_tuple(argument_list)

vprintf = printf
vqueryf = queryf
vscanf = scanf
vsprintf = sprintf
vsscanf = sscanf

#: A deprecated alias. See VPP-4.3, rule 4.3.5 and observation 4.3.2.
get_default_resource_manager = open_default_resource_manager

 © Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

getting_nivisa.html

 Navigation

 		
 index

 		
 modules |

 		PyVISA 1.5 documentation »

NI-VISA Installation

In every OS, the NI-VISA library bitness (i.e. 32- or 64-bit) has to match the Python bitness. So first you need to install a NI-VISA that works with your OS and then the Python version matching the installed NI-VISA bitness.

PyVISA 1.5 includes a debugging command to help you troubleshoot this (and other things):

python -c "from pyvisa import util; util.get_debug_info()"

NI VISA 5.4.1 is available for:

Mac OS X

Download NI-VISA for Mac OS X [http://www.ni.com/download/ni-visa-5.4.1/4631/en/]

Supports:

		Mac OS X 10.7.x x86 and x86-64

		Mac OS X 10.8.x

64-bit VISA applications are supported for a limited set of instrumentation buses. The supported buses are ENET-Serial, USB, and TCPIP. Logging VISA operations in NI I/O Trace from 64-bit VISA applications is not supported.

Windows

Download NI-VISA for Windows [http://www.ni.com/download/ni-visa-5.4.1/4626/en/]

Suports:

		Windows Server 2003 R2 (32-bit version only)

		Windows Server 2008 R2 (64-bit version only)

		Windows 8 x64 Edition (64-bit version)

		Windows 8 (32-bit version)

		Windows 7 x64 Edition (64-bit version)

		Windows 7 (32-bit version)

		Windows Vista x64 Edition (64-bit version)

		Windows Vista (32-bit version)

		Windows XP Service Pack 3

Support for Windows Server 2003 R2 may require disabling physical address extensions (PAE).

Linux

Download NI-VISA for Linux [http://www.ni.com/download/ni-visa-5.4.1/4629/en/]

Supports:

		openSUSE 12.2

		openSUSE 12.1

		Red Hat Enterprise Linux Desktop + Workstation 6

		Red Hat Enterprise Linux Desktop + Workstation 5

		Scientific Linux 6.x

		Scientific Linux 5.x

Currently, only 32-bit applications are supported on the x86-64 architecture.

Note

NI-VISA runs on other linux distros but the installation is more cumbersome.

 © Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		PyVISA 1.5 documentation »

 All modules for which code is available

		pyvisa.ctwrapper.functions

		pyvisa.highlevel

 © Copyright 2014, PyVISA Authors.
 Created using Sphinx 1.2.2.

_images/logo-full.jpg
PyVISA

_static/minus.png

