

 Navigation

 	
 index

 	
 modules |

 	PyVISA 1.4 documentation

PyVISA

	Date:	February 27, 2017

	Author:	Torsten Bronger

	Maintainer:	Florian Bauer <pyvisa-devel@lists.sourceforge.net>

	Downloads:	See the PyVISA project page [http://sourceforge.net/projects/pyvisa].

Front Matter

Copyright © 2005 Torsten Bronger.

Permission is granted to copy, distribute and/or modify this document
under the terms of the MIT License. A copy of the license is included
as a separate file LICENSE in the PyVISA distribution.

Abstract

PyVISA enables you to control your measurement and test equipment
– digital multimeters, motors, sensors and the like. This
document covers the easy-to- use visa module of the PyVISA
package. It implements control of measurement devices in a
straightforward and convenient way. The design goal is to combine
HTBasic’s simplicity with Python’s modern syntax and powerful set
of libraries. PyVISA doesn’t implement VISA itself. Instead,
PyVISA provides bindings to the VISA library (a DLL or “shared
object” file). This library is usually shipped with your GPIB
interface or software like LabVIEW . Alternatively, you can
download it from your favourite equipment vendor (National
Instruments, Agilent, etc).

It can be downloaded at the PyVISA project page [http://sourceforge.net/projects/pyvisa]. You can report bugs
there, too. Additionally, I’m happy about feedback from people
who’ve given it a try. So far, we have positive reports of various
National Instruments GPIB adapters (connected through PCI, USB, and
RS232), the Agilent 82357A, and SRS lock-in amplifiers, for both
Windows and Linux. However, I’d be really surprised about negative
reports anyway, due to the high abstraction level of PyVISA . As
far as USB instruments are concerned, you must make sure that they
act as ordinary USB devices and not as so-called HDI devices (like
keyboard and mouse).

Contents

	PyVISA

	Front Matter
	An example
	Example for serial (RS232) device

	A more complex example

	VISA resource names

	visa — module contents
	Module functions

	Module classes
	General devices

	GPIB devices

	Serial devices

	Common properties of instrument variables
	Timeouts

	Chunk length

	Reading binary data
	Example

	Termination characters
	delay and send_end

	Mixing with direct VISA commands

	Installation
	Prerequisites

	Setting up the module
	Windows

	Linux

	INI file for customisation

	Setting the VISA library in the program

	About PyVISA

An example

Let’s go in medias res and have a look at a simple example:

from visa import *

my_instrument = instrument("GPIB::14")
my_instrument.write("*IDN?")
print my_instrument.read()

This example already shows the two main design goals of PyVISA: preferring
simplicity over generality, and doing it the object-oriented way.

Every instrument is represented in the source by an object instance.
In this case, I have a GPIB instrument with instrument number 14, so I
create the instance (i.e. variable) called my_instrument
accordingly:

my_instrument = instrument("GPIB::14")

“GPIB::14” is the instrument’s resource name. See section
VISA resource names for a short explanation of that. Then,
I send the message “*IDN?” to the device, which is the standard GPIB
message for “what are you?” or – in some cases – “what’s on your
display at the moment?”:

my_instrument.write("*IDN?")

Finally, I print the instrument’s answer on the screen:

print my_instrument.read()

Example for serial (RS232) device

The only RS232 device in my lab is an old Oxford ITC4 temperature
controller, which is connected through COM2 with my computer. The
following code prints its self-identification on the screen:

from visa import *

itc4 = instrument("COM2")
itc4.write("V")
print itc4.read()

Instead of separate write and read operations, you can do both with
one ask() call. Thus, the above source code is equivalent to:

from visa import *

itc4 = instrument("COM2")
print itc4.ask("V")

It couldn’t be simpler. See section Serial devices for
further information about serial devices.

A more complex example

The following example shows how to use SCPI commands with a Keithley
2000 multimeter in order to measure 10 voltages. After having read
them, the program calculates the average voltage and prints it on the
screen.

I’ll explain the program step-by-step. First, we have to initialise
the instrument:

from visa import instrument

keithley = instrument("GPIB::12")
keithley.write("*rst; status:preset; *cls")

Here, we create the instrument variable keithley, which is used for
all further operations on the instrument. Immediately after it, we
send the initialisation and reset message to the instrument.

The next step is to write all the measurement parameters, in
particular the interval time (500ms) and the number of readings (10)
to the instrument. I won’t explain it in detail. Have a look at an
SCPI and/or Keithley 2000 manual.

interval_in_ms = 500
number_of_readings = 10

keithley.write("status:measurement:enable 512; *sre 1")
keithley.write("sample:count %d" % number_of_readings)
keithley.write("trigger:source bus")
keithley.write("trigger:delay %f" % (interval_in_ms / 1000.0))

keithley.write("trace:points %d" % number_of_readings)
keithley.write("trace:feed sense1; feed:control next")

Okay, now the instrument is prepared to do the measurement. The next
three lines make the instrument waiting for a trigger pulse, trigger
it, and wait until it sends a “service request”:

keithley.write("initiate")
keithley.trigger()
keithley.wait_for_srq()

With sending the service request, the instrument tells us that the
measurement has been finished and that the results are ready for
transmission. We could read them with keithley.ask(“trace:data?”)
however, then we’d get

NDCV-000.0004E+0,NDCV-000.0005E+0,NDCV-000.0004E+0,NDCV-000.0007E+0,
NDCV-000.0000E+0,NDCV-000.0007E+0,NDCV-000.0008E+0,NDCV-000.0004E+0,
NDCV-000.0002E+0,NDCV-000.0005E+0

which we would have to convert to a Python list of numbers.
Fortunately, the ask_for_values() method does this work for us:

voltages = keithley.ask_for_values("trace:data?")
print "Average voltage: ", sum(voltages) / len(voltages)

Finally, we should reset the instrument’s data buffer and SRQ status
register, so that it’s ready for a new run. Again, this is explained
in detail in the instrument’s manual:

keithley.ask("status:measurement?")
keithley.write("trace:clear; feed:control next")

That’s it. 18 lines of lucid code. (Well, SCPI is awkward, but
that’s another story.)

VISA resource names

If you use the function instrument(), you must tell this
function the VISA resource name of the instrument you want to
connect to. Generally, it starts with the bus type, followed by a
double colon ”::”, followed by the number within the bus. For
example,

GPIB::10

denotes the GPIB instrument with the number 10. If you have two GPIB
boards and the instrument is connected to board number 1, you must
write

GPIB1::10

As for the bus, things like “GPIB”, “USB”, “ASRL” (for
serial/parallel interface) are possible. So for connecting to an
instrument at COM2, the resource name is

ASRL2

(Since only one instrument can be connected with one serial interface,
there is no double colon parameter.) However, most VISA systems allow
aliases such as “COM2” or “LPT1”. You may also add your own
aliases.

The resource name is case-insensitive. It doesn’t matter whether you
say “ASRL2” or “asrl2”. For further information, I have to refer
you to a comprehensive VISA description like
http://www.ni.com/pdf/manuals/370423a.pdf.

visa — module contents

This section is a reference to the functions and classes of the
visa module, which is the main module of the PyVISA package.

Module functions

	
visa.get_instruments_list([use_aliases])

	returns a list with all instruments that are known to the local
VISA system. If you’re lucky, these are all instruments connected
with the computer. The boolean use_aliases is True by default,
which means that the more human- friendly aliases like “COM1”
instead of “ASRL1” are returned. With some VISA systems [1] you
can define your own aliases for each device, e.g. “keithley617”
for “GPIB0::15::INSTR”. If use_aliases is False, only
standard resource names are returned.

	
visa.instrument(resource_name[, **keyw])

	returns an instrument variable for the instrument given by
resource_name. It saves you from calling one of the instrument
classes directly by choosing the right one according to the type of
the instrument. So you have one function to open all of your
instruments.

The parameter resource_name may be any valid VISA instrument
resource name, see section VISA resource names. In
particular, you can use a name returned by
get_instruments_list() above.

All further keyword arguments given to this function are passed to
the class constructor of the respective instrument class. See
section General devices for a table with all allowed
keyword arguments and their meanings.

Module classes

General devices

	
class visa.Instrument(resource_name[, **keyw])

	represents an instrument, e.g. a measurement device. It is
independent of a particular bus system, i.e. it may be a GPIB,
serial, USB, or whatever instrument. However, it is not possible
to perform bus-specific operations on instruments created by this
class. For this, have a look at the specialised classes like
GpibInstrument (section GPIB devices).

The parameter resource_name takes the same syntax as resource
specifiers in VISA. Thus, it begins with the bus system followed
by ”::”, continues with the location of the device within the bus
system, and ends with an optional ”::INSTR”.

Possible keyword arguments are:

	Keyword
	Description

	timeout
	timeout in seconds for all device
operations, see section
Timeouts. Default: 5

	chunk_size
	Length of read data chunks in bytes, see
section Chunk length. Default:
20kB

	values_format
	Data format for lists of read values, see
section Reading binary data.
Default: ascii

	term_char
	termination characters, see section
Termination characters. Default: None

	send_end
	whether to assert END after each write
operation, see section
Termination characters. Default: True

	delay
	delay in seconds after each write
operation, see section
Termination characters. Default: 0

	lock
	whether you want to have exclusive access
to the device. Default: VI_NO_LOCK

For further information about the locking mechanism, see The VISA library
implementation [http://pyvisa.sourceforge.net/vpp43.html].

The class Instrument defines the following methods and attributes:

	
Instrument.write(message)

	writes the string message to the instrument.

	
Instrument.read()

	returns a string sent from the instrument to the computer.

	
Instrument.read_values([format])

	returns a list of decimal values (floats) sent from the instrument to the
computer. See section A more complex example above. The list may
contain only one element or may be empty.

The optional format argument
overrides the setting of values_format. For information about that, see
section Reading binary data.

	
Instrument.ask(message)

	sends the string message to the instrument and returns the answer string from
the instrument.

	
Instrument.ask_for_values(message[, format])

	sends the string message to the instrument and reads the answer as a list of
values, just as read_values() does.

The optional format argument overrides the setting of values_format. For information about that, see
section Reading binary data.

	
Instrument.clear()

	resets the device. This operation is highly bus-dependent. I refer you to the
original VISA documentation, which explains how this is achieved for VXI, GPIB,
serial, etc.

	
Instrument.trigger()

	sends a trigger signal to the instrument.

	
Instrument.read_raw()

	returns a string sent from the instrument to the computer. In contrast to
read(), no termination characters are checked or stripped. You get the
pristine message.

	
Instrument.timeout

	The timeout in seconds for each I/O operation. See section Timeouts
for further information.

	
Instrument.term_chars

	The termination characters for each read and write operation. See section
Termination characters for further information.

	
Instrument.send_end

	Whether or not to assert EOI (or something equivalent, depending on the
interface type) after each write operation. See section Termination characters
for further information.

	
Instrument.delay

	Time in seconds to wait after each write operation. See section
Termination characters for further information.

	
Instrument.values_format

	The format for multi-value data sent from the instrument to the computer. See
section Reading binary data for further information.

GPIB devices

	
class visa.GpibInstrument(gpib_identifier[, board_number[, **keyw]])

	represents a GPIB instrument. If gpib_identifier is a string, it is
interpreted as a VISA resource name (section VISA resource names).
If it is a number, it denotes the device number at the GPIB bus.

The optional board_number defaults to zero. If you have more that one GPIB bus system
attached to the computer, you can select the bus with this parameter.

The keyword arguments are interpreted the same as with the class
Instrument.

Note

Since this class is derived from the class Instrument, please refer to
section General devices for the basic operations.
GpibInstrument can do everything that Instrument can do, so
it simply extends the original class with GPIB-specific operations.

The class GpibInstrument defines the following methods:

	
GpibInstrument.wait_for_srq([timeout])

	waits for a serial request (SRQ) coming from the instrument. Note that this
method is not ended when another instrument signals an SRQ, only this
instrument.

The timeout argument, given in seconds, denotes the maximal
waiting time. The default value is 25 (seconds). If you pass None for the
timeout, this method waits forever if no SRQ arrives.

	
class visa.Gpib([board_number])

	represents a GPIB board. Although most setups have at most one GPIB interface
card or USB-GPIB device (with board number 0), theoretically you may have more.
Be that as it may, for board-level operations, i.e. operations that affect the
whole bus with all connected devices, you must create an instance of this
class.

The optional GPIB board number board_number defaults to 0.

The class Gpib defines the following method:

	
Gpib.send_ifc()

	pulses the interface clear line (IFC) for at least 0.1 seconds.

Note

You needn’t store the board instance in a variable. Instead, you may send an
IFC signal just by saying Gpib().send_ifc().

Serial devices

Please note that “serial instrument” means only RS232 and parallel port
instruments, i.e. everything attached to COM and LPT. In particular, it does
not include USB instruments. For USB you have to use Instrument
instead.

	
class visa.SerialInstrument(resource_name[, **keyw])

	represents a serial instrument. resource_name is the VISA resource name, see
section VISA resource names. The general keyword arguments are
interpreted the same as with the class Instrument. The only
difference is the default value for term_chars: For serial instruments,
CR (carriage return) is used to terminate readings and writings.

Note

Since this class is derived from the class Instrument, please refer to
section General devices for all operations.
SerialInstrument can do everything that Instrument can do.

The class SerialInstrument defines the following additional properties.
Note that all properties can also be given as keyword arguments when calling
the class constructor or instrument().

	
SerialInstrument.baud_rate

	The communication speed in baud. The default value is 9600.

	
SerialInstrument.data_bits

	Number of data bits contained in each frame. Its value must be from 5 to 8.
The default is 8.

	
SerialInstrument.stop_bits

	Number of stop bits contained in each frame. Possible values are 1, 1.5, and
2. The default is 1.

	
SerialInstrument.parity

	The parity used with every frame transmitted and received. Possible values
are:

	Value
	Description

	no_parity
	no parity bit is used

	odd_parity
	the parity bit causes odd parity

	even_parity
	the parity bit causes even parity

	mark_parity
	the parity bit exists but it’s always 1

	space_parity
	the parity bit exists but it’s always 0

The default value is no_parity.

	
SerialInstrument.end_input

	This determines the method used to terminate read operations. Possible values
are:

	Value
	Description

	last_bit_end_input
	read will terminate as soon as a character
arrives with its last data bit set

	term_chars_end_input
	read will terminate as soon as the last
character of term_chars is received

The default value is term_chars_end_input.

Common properties of instrument variables

Timeouts

Very most VISA I/O operations may be performed with a timeout. If a timeout is
set, every operation that takes longer than the timeout is aborted and an
exception is raised. Timeouts are given per instrument.

For all PyVISA objects, a timeout is set with

my_device.timeout = 25

Here, my_device may be a device, an interface or whatever, and its timeout is
set to 25 seconds. Floating-point values are allowed. If you set it to zero,
all operations must succeed instantaneously. You must not set it to None.
Instead, if you want to remove the timeout, just say

del my_device.timeout

Now every operation of the resource takes as long as it takes, even
indefinitely if necessary.

The default timeout is 5 seconds, but you can change it when creating the device object:

my_instrument = instrument("ASRL1", timeout = 8)

This creates the object variable my_instrument and sets its timeout to 8
seconds. In this context, a timeout value of None is allowed, which
removes the timeout for this device.

Note that your local VISA library may round up this value heavily. I experienced this effect with my National
Instruments VISA implementation, which rounds off to 0, 1, 3 and 10 seconds.

Chunk length

If you read data from a device, you must store it somewhere. Unfortunately,
PyVISA must make space for the data before it starts reading, which means
that it must know how much data the device will send. However, it doesn’t know
a priori.

Therefore, PyVISA reads from the device in chunks. Each chunk is
20 kilobytes long by default. If there’s still data to be read, PyVISA repeats
the procedure and eventually concatenates the results and returns it to you.
Those 20 kilobytes are large enough so that mostly one read cycle is
sufficient.

The whole thing happens automatically, as you can see. Normally
you needn’t worry about it. However, some devices don’t like to send data in
chunks. So if you have trouble with a certain device and expect data lengths
larger than the default chunk length, you should increase its value by saying
e.g.

my_instrument.chunk_size = 102400

This example sets it to 100 kilobytes.

Reading binary data

Some instruments allow for sending the measured data in binary form. This has
the advantage that the data transfer is much smaller and takes less time.
PyVISA currently supports three forms of transfers:

	ascii

	This is the default mode. It assumes a normal string with comma- or
whitespace-separated values.

	single

	The values are expected as a binary sequence of IEEE floating point values with
single precision (i.e. four bytes each). [2]

	double

	The same as single, but with values of double precision (eight bytes each).

You can set the form of transfer with the property values_format, either
with the generation of the object,

my_instrument = instrument("GPIB::12", values_format = single)

or later by setting the property directly:

my_instrument.values_format = single

Setting this option affects the methods read_values() and
ask_for_values(). In particular, you must assure separately that the
device actually sends in this format. In some cases it may be necessary to
set the byte order, also known as endianness. PyVISA assumes little-endian
as default. Some instruments call this “swapped” byte order. However, there
is also big-endian byte order. In this case you have to append |
big_endian to your values format:

my_instrument = instrument("GPIB::12", values_format = single | big_endian)

Example

In order to demonstrate how easy reading binary data can be, remember our
example from section A more complex example. You just have to append
the lines

keithley.write("format:data sreal")
keithley.values_format = single

to the initialisation commands, and all measurement data will be transmitted as
binary. You will only notice the increased speed, as PyVISA converts it into
the same list of values as before.

Termination characters

Somehow the computer must detect when the device is finished with sending a
message. It does so by using different methods, depending on the bus system.
In most cases you don’t need to worry about termination characters because the
defaults are very good. However, if you have trouble, you may influence
termination characters with PyVISA.

Termination characters may be one
character or a sequence of characters. Whenever this character or sequence
occurs in the input stream, the read operation is terminated and the read
message is given to the calling application. The next read operation continues
with the input stream immediately after the last termination sequence. In
PyVISA, the termination characters are stripped off the message before it is
given to you.

You may set termination characters for each instrument, e.g.

my_instrument.term_chars = CR

Alternatively you can give it when creating your instrument object:

my_instrument = instrument("GPIB::10", term_chars = CR)

The default value depends on the bus system. Generally, the sequence is empty,
in particular for GPIB . For RS232 it’s CR .

Well, the real default is not “” (the empty string) but None.
There is a subtle difference:
“” really means the termination characters are not used at all, neither for
read nor for write operations. In contrast, None means that every write
operation is implicitly terminated with CR+LF . This works well with most
instruments.

All CRs and LFs are stripped from the end of a read string, no
matter how term_chars is set.

The termination characters sequence is an
ordinary string. CR and LF are just string constants that allow
readable access to “\r” and “\n”. Therefore, instead of CR+LF, you
can also write “\r\n”, whichever you like more.

delay and send_end

There are two further options related to message termination, namely
send_end and delay. send_end is a boolean. If it’s True (the
default), the EOI line is asserted after each write operation, signalling the
end of the operation. EOI is GPIB-specific but similar action is taken for
other interfaces.

The argument delay is the time in seconds to wait after
each write operation. So you could write:

my_instrument = instrument("GPIB::10", send_end = False, delay = 1.2)

This will set the delay to 1.2 seconds, and the EOI line is omitted. By the
way, omitting EOI is not recommended, so if you omit it nevertheless, you
should know what you’re doing.

Mixing with direct VISA commands

You can mix the high-level object-oriented approach described in this document
with middle-level VISA function calls in module vpp43 as described in
The VISA library implementation [http://pyvisa.sourceforge.net/vpp43.html]
which is also part of the PyVISA package. By doing so, you have full control
of your devices. I recommend to import the VISA functions with:

from pyvisa import vpp43

Then you can use them with vpp43.function_name(...).

The VISA functions need to know what session you are referring to. PyVISA opens exactly one
session for each instrument or interface and stores its session handle in the
instance attribute vi. For example, these two lines are equivalent:

my_instrument.clear()
vpp43.clear(my_instrument.vi)

In case you need the session handle for the default resource manager, it’s
stored in resource_manager.session:

from visa import *
from pyvisa import vpp43
my_instrument_handle = vpp43.open(resource_manager.session, "GPIB::14",
 VI_EXCLUSIVE_LOCK)

Installation

Prerequisites

PyVISA needs Python version 2.3 or newer.

The PyVISA package doesn’t include
a low-level VISA implementation itself. You have to get it from one of the
VISA vendors, e.g. from the National Instruments VISA pages [http://ni.com/visa/]. NI sells its VISA kit for approx. $400. However,
it’s bundled with most of NI’s hardware and software. Besides, the download
itself is free, and one user reported that he had successfully installed VISA
support without buying anything.

I can’t really tell about other vendors but
well-equipped labs probably have VISA already (even if they don’t know).
Please install VISA properly before you proceed.

Additionally, your Python installation needs a fresh version of ctypes [http://starship.python.net/crew/theller/ctypes/].

By the way, if you use Windows, I recommend to install Enthought Python [http://www.enthought.com/python/]. It is a special Python version with all-
included philosophy for scientific and engineering applications. [3]

Setting up the module

Windows

PyVISA expects a file called visa32.dll in the PATH
. For example, on my system you find this file in
C:\WINNT\system32\ . Either copy it there or expand your
PATH. Alternatively, you can create an INI file. You must
do this anyway if the file is not called visa32.dll on your
system.

Linux

For Linux, the VISA library is by default at
/usr/local/vxipnp/linux/bin/libvisa.so.7. If this is not the case on
your installation, you have to create an INI file.

INI file for customisation

If the VISA library file is not at the default place, or doesn’t have the
default name for your operating system (see above), you can tell PyVISA by
creating a file called .pyvisarc (mind the leading dot).

Another motivation for setting up an INI file is that you have more than one VISA
library, e.g. because two GPIB interfaces of two different vendors are
connected with the computer. However, in this case I’d try to use both
interfaces with one library because sometimes you’re lucky and it works. Note
that PyVISA is currently not able to switch between DLLs while the program is
running.

For Windows, place it in your “Documents and Settings” folder, [4]
e.g. C:\Documents and Settings\smith\.pyvisarc if “smith” is the
name of your login account. For Linux, put it in your home directory.

This file has the format of an INI file. For example, if the library
is at /usr/lib/libvisa.so.7, the file .pyvisarc must
contain the following:

[Paths]

VISA library: /usr/lib/libvisa.so.7

Please note that [Paths] is treated case-sensitively.

You can define a site-wide configuration file at
/usr/share/pyvisa/.pyvisarc (It may also be
/usr/local/... depending on the location of your Python).
Under Windows, this file is usually placed at
c:\Python24\share\pyvisa\.pyvisarc.

Setting the VISA library in the program

You can also set the path to your VISA library at the beginning of your
program. Just start the program with

from pyvisa.vpp43 import visa_library
visa_library.load_library("/usr/lib/libvisa.so.7")
from visa import *
...

Keep in mind that the backslashes of Windows paths must be properly escaped, or
the path must be preceeded by r:

from pyvisa.vpp43 import visa_library
visa_library.load_library(r"c:\WINNT\system32\visa32.dll")
from visa import *
...

About PyVISA

PyVISA was originally programmed by Torsten Bronger, Aachen, Germany
and Gregor Thalhammer, Innsbruck, Austria. It bases on earlier
experiences by Thalhammer.

Its homepage is http://sourceforge.net/projects/pyvisa/.
Please report bugs there.

I’m also very keen to know whether PyVISA works for you or not. Thank you!

Footnotes

	[1]	such as the “Measurement and Automation Center” by National Instruments

	[2]	All flavours of binary data streams defined in IEEE488.2 are supported, i.e.
those beginning with <header>#<digit>,
where <header> is optional, and <digit> may also be
“0”.

	[3]	Of course, it’s highly advisable not to have installed another version of
Python on your system before you install Enthought Python.

	[4]	its name depends on the language of your Windows version

 Copyright 2012 Florian Bauer, 2011 Kevin Saff, 2005-2011 Torsten Bronger, Gregor Thalhammer.
 Last updated on Feb 27, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	PyVISA 1.4 documentation

 Python Module Index

 v

 			

 		
 v	

 	
 	
 visa (Linux,Windows)	
 Controlling measurement and test equipment using VISA.

 Copyright 2012 Florian Bauer, 2011 Kevin Saff, 2005-2011 Torsten Bronger, Gregor Thalhammer.
 Last updated on Feb 27, 2017.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	PyVISA 1.4 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | P
 | R
 | S
 | T
 | V
 | W

A

 	

 	alias

 	ask() (visa.Instrument method)

 	

 	ask_for_values() (visa.Instrument method)

 	authors

B

 	

 	baud_rate (visa.SerialInstrument attribute)

 	

 	binary data

C

 	

 	chunk_length

 	chunk_size

 	clear() (visa.Instrument method)

 	

 	COM2

 	configuration

 	
 ctypes

 	

 	module

D

 	

 	data_bits (visa.SerialInstrument attribute)

 	

 	delay, [1]

 	

 	(visa.Instrument attribute)

E

 	

 	end_input (visa.SerialInstrument attribute)

 	ending sequence

 	

 	
 environment variable

 	

 	PATH, [1]

 	EOI line

F

 	

 	factory function

G

 	

 	get_instruments_list() (in module visa)

 	Gpib (class in visa)

 	

 	GpibInstrument (class in visa)

I

 	

 	INI file

 	installation

 	

 	Instrument (class in visa)

 	instrument(), [1], [2]

 	

 	(in module visa)

K

 	

 	Keithley 2000

 	

 	keyword arguments, common

L

 	

 	lock

M

 	

 	Measurement and Automation Center

 	

 	
 module

 	

 	ctypes

 	vpp43

P

 	

 	parity (visa.SerialInstrument attribute)

 	PATH, [1], [2]

 	

 	prerequisites

 	pyvisarc@.pyvisarc

R

 	

 	read() (visa.Instrument method)

 	read_raw() (visa.Instrument method)

 	read_values() (visa.Instrument method)

 	

 	resource name

 	RS232

S

 	

 	SCPI

 	send_end, [1]

 	

 	(visa.Instrument attribute)

 	send_ifc() (visa.Gpib method)

 	serial device

 	

 	SerialInstrument (class in visa)

 	service request

 	setting up PyVISA

 	stop_bits (visa.SerialInstrument attribute)

T

 	

 	term_char

 	term_chars

 	

 	(visa.Instrument attribute)

 	termination characters

 	

 	timeout, [1]

 	

 	(visa.Instrument attribute)

 	trigger

 	trigger() (visa.Instrument method)

V

 	

 	values_format, [1]

 	

 	(visa.Instrument attribute)

 	visa (module)

 	VISA commands, mixing with

 	

 	VISA resource name

 	visa32.dll

 	
 vpp43

 	

 	module

W

 	

 	wait_for_srq() (visa.GpibInstrument method)

 	

 	write() (visa.Instrument method)

 Copyright 2012 Florian Bauer, 2011 Kevin Saff, 2005-2011 Torsten Bronger, Gregor Thalhammer.
 Last updated on Feb 27, 2017.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		
 modules |

 		PyVISA 1.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012 Florian Bauer, 2011 Kevin Saff, 2005-2011 Torsten Bronger, Gregor Thalhammer.
 Last updated on Feb 27, 2017.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/comment-close.png

index.html

 Navigation

 		
 index

 		
 modules |

 		PyVISA 1.4 documentation »

Python GPIB etc. support with PyVISA

Controlling GPIB, RS232, and USB instruments

		Date:		February 27, 2017

		Author:		Torsten Bronger

		Maintainer:		Florian Bauer <pyvisa-devel@lists.sourceforge.net>

		Downloads:		See the PyVISA project page [http://sourceforge.net/projects/pyvisa/].

PyVISA

The PyVISA package enables you to control all kinds of measurement equipment
through various busses (GPIB, RS232, USB) with Python programs. As an example,
reading self-identification from a Keithley Multimeter with GPIB number 12 is
as easy as three lines of Python code:

import visa
keithley = visa.instrument("GPIB::12")
print keithley.ask("*IDN?")

(That’s the whole program; really!) It is tailored to work on both Windows and
Linux, and with arbitrary adapters (e.g. National Instruments, Agilent,
Tektronix, Stanford Research Systems). In order to achieve this, PyVISA
relies on an external library file which is bundled with hardware and software
of those vendors. (So only in rare cases you have to purchase it separately.)

PyVISA implements convenient and Pythonic programming in two layers:

		An object-oriented Python module has been created simply called visa.
It is the recommended way to use PyVISA. See the PyVISA manual [http://pyvisa.sourceforge.net/pyvisa.html] for more
information.

		Additionally, there is the lower level module vpp43, which directly
calls the VISA functions from Python. See the PyVISA low-level
implementation [http://pyvisa.sourceforge.net/vpp43.html] for more information. This is only for people who need
full control or the official VISA functions for some reason.

PyVISA is free open-source software. The PyVISA project page [http://sourceforge.net/projects/pyvisa/] contains the
bug tracker and the download area.

Projects using PyVISA so far:

		pyvLab [http://pyvlab.sourceforge.net/] – program to control VISA-talking instruments

General overview

The programming of measurement instruments can be real pain. There are many
different protocols, sent over many different interfaces and bus systems (GPIB,
RS232, USB). For every programming language you want to use, you have to find
libraries that support both your device and its bus system.

In order to ease this unfortunate situation, the VISA [1] specification was
defined in the middle of the 90ies. Today VISA is implemented on all
significant operating systems. A couple of vendors offer VISA libraries,
partly with free download. These libraries work together with arbitrary
peripherical devices, although they may be limited to certain interface
devices, such as the vendor’s GPIB card.

		[1]		Virtual Instrument Software Architecture

The VISA specification has explicit bindings to Visual Basic, C, and G
(LabVIEW’s graphical language). However, you can use VISA with any language
capable of calling functions in a DLL. Python is such a language.

VISA and Python

Python has a couple of features that make it very interesting for measurement
controlling:

		Python is an easy-to-learn scripting language with short development cycles.

		It represents a high abstraction level [2], which perfectly blends with the
abstraction level of measurement programs.

		It has a very rich set of native libraries, including numerical and plotting
modules for data analysis and visualisation.

		A large set of books (in many languages) and on-line publications is
available.

		You can download it for free at http://www.python.org.

		[2]		For example, you don’t need to care about the underlying operating
system with all its peculiarities.

Links

		PyVISA itself:
		the PyVISA project page [http://sourceforge.net/projects/pyvisa/] with download area and bug tracker

		the PyVISA manual [http://pyvisa.sourceforge.net/pyvisa.html]

		the PyVISA low-level implementation [http://pyvisa.sourceforge.net/vpp43.html] called vpp43

		The original VISA docs:
		VISA specification [http://www.ivifoundation.org/Downloads/Specifications.htm] (scroll down to the end)

		VISA library specification [http://www.ivifoundation.org/Downloads/Class%20Specifications/vpp43.doc]

		VISA specification for textual languages [http://www.ivifoundation.org/Downloads/Class%20Specifications/vpp432.doc]

		The very good VISA manuals from National Instruments’s VISA pages [http://ni.com/visa/]:
		NI-VISA User Manual [http://digital.ni.com/manuals.nsf/websearch/266526277DFF74F786256ADC0065C50C]

		NI-VISA Programmer Reference Manual [http://digital.ni.com/manuals.nsf/websearch/87E52268CF9ACCEE86256D0F006E860D]

		NI-VISA help file [http://digital.ni.com/manuals.nsf/websearch/21992F3750B967ED86256F47007B00B3] in HTML

 © Copyright 2012 Florian Bauer, 2011 Kevin Saff, 2005-2011 Torsten Bronger, Gregor Thalhammer.
 Last updated on Feb 27, 2017.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

vpp43.html

 Navigation

 		
 index

 		
 modules |

 		PyVISA 1.4 documentation »

The VISA library implementation

Part of the PyVISA package

		Date:		February 27, 2017

		Author:		Torsten Bronger

		Maintainer:		Florian Bauer <pyvisa-devel@lists.sourceforge.net>

		Downloads:		See the PyVISA project page.

		Abstract:		This document covers the vpp43.py module, which is part of the
PyVISA [http://pyvisa.sourceforge.net/] package. This module implements thin wrappers around all functions
defined in the VISA specification [http://www.ivifoundation.org/Downloads/Class%20Specifications/vpp43.doc]. Thus it enables the programmer to
communicate with measurement and test devices via GPIB, RS232, USB etc.

Contents

		The VISA library implementation
		Part of the PyVISA package
		About the vpp43 module

		Connecting to the VISA shared object

		Diagnostics

		The PyVISA function reference
		assert_interrupt_signal

		assert_trigger

		assert_utility_signal

		buffer_read

		buffer_write

		clear

		close

		disable_event

		discard_events

		enable_event

		find_next

		find_resources

		flush

		get_attribute

		gpib_command

		gpib_control_atn

		gpib_control_ren

		gpib_pass_control

		gpib_send_ifc

		in_8, in_16, in_32

		install_handler

		lock

		map_address

		map_trigger

		memory_allocation

		memory_free

		move

		move_asynchronously

		move_in_8, move_in_16, move_in_32

		move_out_8, move_out_16, move_out_32

		open

		open_default_resource_manager

		get_default_resource_manager

		out_8, out_16, out_32

		parse_resource

		parse_resource_extended

		peek_8, peek_16, peek_32

		poke_8, poke_16, poke_32

		printf

		queryf

		read

		read_asynchronously

		read_stb

		read_to_file

		scanf

		set_attribute

		set_buffer

		sprintf

		sscanf

		status_description

		terminate

		uninstall_handler

		unlock

		unmap_address

		unmap_trigger

		usb_control_in

		usb_control_out

		vprintf, vqueryf, vscanf, vsprintf, vsscanf

		vxi_command_query

		wait_on_event

		write

		write_asynchronously

		write_from_file

About the vpp43 module

This module vpp43 is a cautious yet thorough adaption of the VISA
specification for Python. The “textual languages” VISA specification can’t be
implemented as is because Python is rather different from C and Visual Basic,
most notably because of lacking call-by-reference. The second important
difference are strings: In C they are null-terminated whereas Python doesn’t
have this constraint.

The slightly odd name vpp43 for this module derives from the necessity to
make (name)space for the visa module that is supposed to realise the actual
high-level VISA access in Python. The VXIplug&play Systems Alliance [http://www.vxipnp.org/] used to
maintain the VISA specifications, and, although today the IVI foundation [http://ivifoundation.org] is
responsible for this task, the files are still called vpp43.doc etc. So I
thought vpp43 was an appropriate name.

You may wonder why I did choose new names for all routines. I did so because
Python has its own naming guidelines, and because it shows that the routines
had to be adapted. However, I didn’t change them really: Every routine is a
1:1 counterpart. By calling them from C, you could even create a C-based VISA
implementation with the original function signatures and semantics. Moreover,
the new names are mere expansions of the original ones.

Connecting to the VISA shared object

vpp43 tries to find the VISA library for itself. On Windows, this is not a
big problem. visa32.dll must be in your PATH. If it isn’t, move it
there or expand your PATH.

However, on Linux you may need to give the explicit path to the shared object
file. You do so by saying for example:

import pyvisa.vpp43 as vpp43
vpp43.visa_library.load_library("/path/to/my/libvisa.so.7")

By default, vpp43 looks for the library in
/usr/local/vxipnp/linux/bin/libvisa.so.7. Please pay attention to the fact
that the library must have been successfully loaded before any VISA call is
made.

Alternatively, you can tell PyVISA so by creating a file ~/.pyvisarc. This
has the format of an INI file. For example, if the library is at
/usr/lib/libvisa.so.7, the file .pyvisarc must contain the following:

[Paths]

VISA library: /usr/lib/libvisa.so.7

Please note that [Paths] is treated case-sensitively.

You can define a site-wide configuration file at
/usr/share/pyvisa/.pyvisarc. (It may also be /usr/local/... depending
on the location of your Python.)

Diagnostics

This module can raise a couple of vpp43-specific exceptions.

		Name:		VisaIOError

		Description:		This is an error of the underlying VISA library, as described in
table 3.3.1 in the VISA specification for textual languages [http://www.ivifoundation.org/Downloads/Class%20Specifications/vpp432.doc]. The
exception member error_code contains the (always negative) VISA error
number, as listed in that table.

		Name:		VisaIOWarning

		Description:		This is a warning of the underlying VISA library, as described in
table 3.3.1 in the VISA specification for textual languages [http://www.ivifoundation.org/Downloads/Class%20Specifications/vpp432.doc]. The
exception member completion_code contains the (always positive) VISA
completion number, as listed in that table.

Normally you don’t see these warnings. You can turn them into exceptions
with:

import warnings
warnings.filterwarnings("error")

Consult the description of the warnings package for further
information.

		Name:		TypeError

		Description:		The current implementation of printf, scanf, sprintf,
sscanf, and queryf have the limitation that only integers, floats,
and strings are allowed as types for the arbitrary arguments.
Additionally, only format string directives for C longs, C doubles, and C
strings are allowed to use, albeit not checked. However, if you pass a
list or a unicode string, you get this exception.

The same exception is raised if an unsupported type is passed as user
handle to install_handler. See there for a list of supported types.

		Name:		UnknownHandler

		Description:		Raised if an unknown handler/user_handle pair is passed to
uninstall_handler. In particular, you must save the user handle
returned by install_handler in order to pass it to uninstall_handler.

Moreover, this module may pass exceptions generated by ctypes. This may be
because you’ve passed a wrong type to a function, or that the VISA library file
was not found, but it may also mean a bug in vpp43 itself. So if you don’t
see why the exception was raised, contact the current maintainers of PyVISA.

The PyVISA function reference

Please note that all descriptions given in this reference serve mostly as
reminders. For real descriptions consult a VISA specification [http://www.ivifoundation.org/Downloads/Class%20Specifications/vpp43.doc] or NI-VISA
Programmer Reference Manual [http://digital.ni.com/manuals.nsf/websearch/87E52268CF9ACCEE86256D0F006E860D]. However, whenever there are PyVISA-specific
semantics, they are listed here, too.

assert_interrupt_signal

Asserts the specified device interrupt or signal.

		Call:		assert_interrupt_signal(vi, mode, status_id)

		VISA name:		viAssertIntrSignal

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		mode : integer

		This specifies how to assert the interrupt.

		status_id : integer

		This is the status value to be presented during an interrupt
acknowledge cycle.

		Return values:		None.

assert_trigger

Assert software or hardware trigger.

		Call:		assert_trigger(vi, protocol)

		VISA name:		viAssertTrigger

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		protocol : integer

		Trigger protocol to use during assertion. Valid values are:
VI_TRIG_PROT_DEFAULT, VI_TRIG_PROT_ON, VI_TRIG_PROT_OFF,
and VI_TRIG_PROT_SYNC.

		Return values:		None.

assert_utility_signal

Asserts the specified utility bus signal.

		Call:		assert_utility_signal(vi, line)

		VISA name:		viAssertUtilSignal

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		line : integer

		Specifies the utility bus signal to assert.

		Return values:		None.

buffer_read

Similar to read, except that the operation uses the formatted I/O read
buffer for holding data read from the device.

		Call:		buffer = buffer_read(vi, count)

		VISA name:		viBufRead

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		count : integer

		Maximal number of bytes to be read.

		Return values:		
		buffer : string

		The buffer with the received data from device.

buffer_write

Similar to write, except the data is written to the formatted I/O write
buffer rather than directly to the device.

		Call:		return_count = buffer_write(vi, buffer)

		VISA name:		viBufWrite

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		buffer : string

		The data block to be sent to device.

		Return values:		
		return_count : integer

		The number of bytes actually transferred.

clear

Clear a device.

		Call:		clear(vi)

		VISA name:		viClear

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		Return values:		None.

close

Close the specified session, event, or find list.

		Call:		close(vi)

		VISA name:		viClose

		Parameters:		
		vi : integer, ViEvent, or ViFindList

		Unique logical identifier to a session, event, or find list.

		Return values:		None.

disable_event

Disable notification of an event type by the specified mechanisms.

		Call:		disable_event(vi, event_type, mechanism)

		VISA name:		viDisableEvent

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		event_type : integer

		Logical event identifier.

		mechanism : integer

		Specifies event handling mechanisms to be disabled. The queuing
mechanism is disabled by specifying VI_QUEUE, and the callback
mechanism is disabled by specifying VI_HNDLR or
VI_SUSPEND_HNDLR. It is possible to disable both mechanisms
simultaneously by specifying VI_ALL_MECH.

		Return values:		None.

discard_events

Discard event occurrences for specified event types and mechanisms in a
session.

		Call:		discard_events(vi, event_type, mechanism)

		VISA name:		viDiscardEvents

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		event_type : integer

		Logical event identifier.

		mechanism : integer

		Specifies the mechanisms for which the events are to be discarded. The
VI_QUEUE value is specified for the queuing mechanism and the
VI_SUSPEND_HNDLR value is specified for the pending events in the
callback mechanism. It is possible to specify both mechanisms
simultaneously by specifying VI_ALL_MECH.

		Return values:		None.

enable_event

Enable notification of a specified event.

		Call:		enable_event(vi, event_type, mechanism, context)

		VISA name:		viEnableEvent

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		event_type : integer

		Logical event identifier.

		mechanism : integer

		Specifies event handling mechanisms to be enabled. The queuing
mechanism is enabled by specifying VI_QUEUE, and the callback
mechanism is enabled by specifying VI_HNDLR or
VI_SUSPEND_HNDLR. It is possible to enable both mechanisms
simultaneously by specifying bit-wise “or” of VI_QUEUE and one of
the two mode values for the callback mechanism.

		context : integer : optional

		According to the VISA specification, this must be Vi_NULL always.
(This is also the default value, of course.)

		Return values:		None.

find_next

		Call:		instrument_description = find_next(find_list)

		VISA name:		viFindNext

		Parameters:		
		find_list : ViFindList

		Describes a find list. This parameter must be created by
find_resources.

		Return values:		
		instrument_description : string

		Returns a string identifying the location of a device. Strings can then
be passed to open to establish a session to the given device.

find_resources

		Call:		find_list, return_counter, instrument_description =
find_resources(session, regular_expression)

		VISA name:		viFindRsrc

		Parameters:		
		session : integer

		Resource Manager session (should always be the Default Resource Manager
for VISA returned from open_default_resource_manager).

		regular_expression : integer

		This is a regular expression followed by an optional logical
expression.

		Return values:		
		find_list : ViFindList

		Returns a handle identifying this search session. This handle will be
used as an input in find_next.

		return_counter : integer

		Number of matches.

		instrument_description : string

		Returns a string identifying the location of a device. Strings can then
be passed to open to establish a session to the given device.

flush

Manually flush the specified buffers associated with formatted I/O operations
and/or serial communication.

		Call:		flush(vi, mask)

		VISA name:		viFlush

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		mask : integer

		Specifies the action to be taken with flushing the buffer.

		Return values:		None.

get_attribute

Retrieve the state of an attribute.

		Call:		attribute_state = get_attribute(vi, attribute)

		VISA name:		viGetAttribute

		Parameters:		
		vi : integer, ViEvent, or ViFindList

		Unique logical identifier to a session.

		attribute : integer

		Session, event, or find list attribute for which the state query is
made.

		Return values:		
		attribute_state : integer, string, or list of integers

		The state of the queried attribute for a specified resource.

gpib_command

Write GPIB command bytes on the bus.

		Call:		return_count = gpib_command(vi, buffer)

		VISA name:		viGpibCommand

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		buffer : string

		Buffer containing valid GPIB commands.

		Return values:		
		return_count : integer

		Number of bytes actually transferred.

gpib_control_atn

Controls the state of the GPIB ATN interface line, and optionally the active
controller state of the local interface board.

		Call:		gpib_control_atn(vi, mode)

		VISA name:		viGpibControlATN

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		mode : integer

		Specifies the state of the ATN line and optionally the local active
controller state. See the Description section for actual values.

		Return values:		None.

gpib_control_ren

Controls the state of the GPIB REN interface line, and optionally the
remote/local state of the device.

		Call:		gpib_control_ren(vi, mode)

		VISA name:		viGpibControlREN

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		mode : integer

		Specifies the state of the REN line and optionally the device
remote/local state. See the Description section for actual values.

		Return values:		None.

gpib_pass_control

Tell the GPIB device at the specified address to become controller in charge
(CIC).

		Call:		gpib_pass_control(vi, primary_address, secondary_address)

		VISA name:		viGpibPassControl

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		primary_address : integer

		Primary address of the GPIB device to which you want to pass control.

		secondary_address : integer

		Secondary address of the targeted GPIB device. If the targeted device
does not have a secondary address, this parameter should contain the
value VI_NO_SEC_ADDR.

		Return values:		None.

gpib_send_ifc

Pulse the interface clear line (IFC) for at least 100 microseconds.

		Call:		gpib_send_ifc(vi)

		VISA name:		viGpibSendIFC

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		Return values:		None.

in_8, in_16, in_32

Read in an 8-bit, 16-bit, or 32-bit value from the specified memory space and
offset.

		Call:		
value_8 = in_8(vi, space, offset)

value_16 = in_16(vi, space, offset)

value_32 = in_32(vi, space, offset)

		VISA name:		viIn8, viIn16, viIn32

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		space : integer

		Specifies the address space.

		offset : integer

		Offset in bytes of the address or register from which to read.

		Return values:		
		value_8, value_16, value_32 : integer

		Data read from bus (8 bits for in_8, 16 bits for in_16, and 32
bits for in_32).

install_handler

Install handlers for event callbacks. A handler must have the following
signature:

def event_handler(vi, event_type, context, user_handle):
 ...

Its parameters mean the following:

		vi : integer

		Unique logical identifier to a session.

		event_type : ViEvent

		Logical event identifier. With event_type.value you get its value as
an integer.

		context : ViEvent

		A handle specifying the unique occurrence of an event.

		user_handle : ctypes pointer type

		A pointer to the user handle in ctypes form. See below at “Return
values” for how to use it, however, you have to substitute
user_handle.contents for converted_user_handle in the explanation.

		Call:		converted_user_handle = install_handler(vi, event_type, handler,
user_handle)

		VISA name:		viInstallHandler

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		event_type : integer

		Logical event identifier.

		handler : callable

		Interpreted as a valid reference to a handler to be installed by a
client application.

		user_handle : None, float, integer, string, or list of floats or integers : optional

		A value specified by an application that can be used for identifying
handlers uniquely for an event type. It defaults to None.

		Return values:		
		converted_user_handle : ctypes type

		An object representing the user_handle. Use it to communicate with
your handler. If your user_handle was a list, you get its elements as
usual with converted_user_handle[index]. You can even convert it
to a list with list(converted_user_handle) (however, this yields a
copy).

For strings, use converted_user_handle.value if it’s supposed to be
interpreted as a null-terminated string, or
converted_user_handle.raw if you want to see all bytes. You can
also write to both expressions, however, slicing is only possible for
reading.

For simple types, you can say converted_user_handle.value (read and
write).

Attention: You must assure that you never write values to
converted_user_data which are longer (in bytes) than the initial
values. So be careful not to write a string longer than the original
one, nor a longer list. You’d be alerted by exceptions, though.

lock

Establish an access mode to the specified resource.

		Call:		access_key = lock(vi, lock_type, timeout, requested_key)

		VISA name:		viLock

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		lock_type : integer

		Specifies the type of lock requested, which can be either
VI_EXCLUSIVE_LOCK or VI_SHARED_LOCK.

		timeout : integer

		Absolute time period in milliseconds that a resource waits to get
unlocked by the locking session before returning this operation with an
error.

		requested_key : ctypes string : optional

		This parameter is not used if lock_type is VI_EXCLUSIVE_LOCK
(exclusive locks). When trying to lock the resource as
VI_SHARED_LOCK (shared), you can either omit it so that VISA
generates an access_key for the session, or you can suggest an
access_key to use for the shared lock.

		Return values:		
		access_key : ctypes string : optional

		This value is None if lock_type is VI_EXCLUSIVE_LOCK
(exclusive locks). When trying to lock the resource as
VI_SHARED_LOCK (shared), the function returns a unique access key
for the lock if the operation succeeds. This access_key can then be
passed to other sessions to share the lock.

map_address

Map the specified memory space into the process’s address space.

		Call:		address = map_address(vi, map_space, map_base, map_size, access,
suggested)

		VISA name:		viMapAddress

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		map_space : integer

		Specifies the address space to map.

		map_base : ViBusAddress

		Offset in bytes of the memory to be mapped.

		map_size : integer

		Amount of memory to map in bytes.

		access : integer : optional

		Must be VI_FALSE.

		suggested : integer : optional

		If not VI_NULL (the default), the operating system attempts to map
the memory to the address specified in suggested. There is no
guarantee, however, that the memory will be mapped to that
address. This operation may map the memory into an address region
different from suggested.

		Return values:		
		address : ViAddr

		Address in your process space where the memory was mapped.

map_trigger

Map the specified trigger source line to the specified destination line.

		Call:		map_trigger(vi, trigger_source, trigger_destination, mode)

		VISA name:		viMapTrigger

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		trigger_source : integer

		Source line from which to map.

		trigger_destination : integer

		Destination line to which to map.

		mode : integer

		Specifies the trigger mapping mode. This should always be VI_NULL.

		Return values:		None.

memory_allocation

Allocate memory from a device’s memory region.

		Call:		memory_allocation(vi, size)

		VISA name:		viMemAlloc

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		size : integer

		Specifies the size of the allocation.

		Return values:		
		offset : ViBusAddress

		Returns the offset of the allocated device memory.

memory_free

Free memory previously allocated using memory_allocation.

		Call:		memory_free(vi, offset)

		VISA name:		viMemFree

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		offset : ViBusAddress

		Specifies the memory previously allocated with memory_allocation.

		Return values:		None.

move

Move a block of data.

		Call:		move(vi, source_space, source_offset, source_width, destination_space,
destination_offset, destination_width, length)

		VISA name:		viMove

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		source_space : integer

		Specifies the address space of the source.

		source_offset : integer

		Offset in bytes of the starting address or register from which to
read.

		source_width : integer

		Specifies the data width of the source.

		destination_space : integer

		Specifies the address space of the destination.

		destination_offset : integer

		Offset in bytes of the starting address or register to which to write.

		destination_width : integer

		Specifies the data width of the destination.

		length : integer

		Number of elements to transfer, where the data width of the elements to
transfer is identical to source data width.

		Return values:		None.

move_asynchronously

Move a block of data asynchronously.

		Call:		job_id = move_asynchronously(vi, source_space, source_offset,
source_width, destination_space, destination_offset, destination_width,
length)

		VISA name:		viMoveAsync

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		source_space : integer

		Specifies the address space of the source.

		source_offset : integer

		Offset in bytes of the starting address or register from which to
read.

		source_width : integer

		Specifies the data width of the source.

		destination_space : integer

		Specifies the address space of the destination.

		destination_offset : integer

		Offset in bytes of the starting address or register to which to write.

		destination_width : integer

		Specifies the data width of the destination.

		length : integer

		Number of elements to transfer, where the data width of the elements to
transfer is identical to source data width.

		Return values:		
		job_id : ViJobId

		The job identifier of this asynchronous move operation. Each time an
asynchronous move operation is called, it is assigned a unique job
identifier.

move_in_8, move_in_16, move_in_32

Move a block of data from the specified address space and offset to local
memory in increments of 8, 16, or 32 bits.

		Call:		
buffer_8 = move_in_8(vi, space, offset, length)

buffer_16 = move_in_16(vi, space, offset, length)

buffer_32 = move_in_32(vi, space, offset, length)

		VISA name:		viMoveIn8, viMoveIn16, viMoveIn32

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		space : integer

		Specifies the address space.

		offset : ViBusAddress

		Offset in bytes of the starting address or register from which to
read.

		length : integer

		Number of elements to transfer, where the data width of the elements to
transfer is identical to data width (8, 16, or 32 bits).

		Return values:		
		buffer_8, buffer_16, buffer_32 : list of integers

		Data read from bus as a Python list of values.

move_out_8, move_out_16, move_out_32

Move a block of data from local memory to the specified address space and
offset in increments of 8, 16, or 32 bits.

		Call:		
move_out_8(vi, space, offset, length, buffer_8)

move_out_16(vi, space, offset, length, buffer_16)

move_out_32(vi, space, offset, length, buffer_32)

		VISA name:		viMoveOut8, viMoveOut16, viMoveOut32

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		space : integer

		Specifies the address space.

		offset : ViBusAddress

		Offset in bytes of the starting address or register from which to
write.

		length : integer

		Number of elements to transfer, where the data width of the elements to
transfer is identical to data width (8, 16, or 32 bits).

		buffer_8, buffer_16, buffer_32 : sequence of integers

		Data to write to bus. This may be a list or a tuple, however in any
case in must contain integers.

		Return values:		None.

open

Open a session to the specified device.

		Call:		vi = open(session, resource_name, access_mode, open_timeout)

		VISA name:		viOpen

		Parameters:		
		session : integer

		Resource Manager session (should always be the Default Resource Manager
for VISA returned from open_default_resource_manager).

		resource_name : string

		Unique symbolic name of a resource.

		access_mode : integer : optional

		Defaults to VI_NO_LOCK. Specifies the modes by which the resource
is to be accessed. The value VI_EXCLUSIVE_LOCK is used to acquire
an exclusive lock immediately upon opening a session; if a lock cannot
be acquired, the session is closed and an error is returned. The value
VI_LOAD_CONFIG is used to configure attributes to values specified
by some external configuration utility; if this value is not used, the
session uses the default values provided by this
specification. Multiple access modes can be used simultaneously by
specifying a “bitwise OR” of the above values.

		open_timeout : integer : optional

		If the access_mode parameter requests a lock, then this parameter
specifies the absolute time period in milliseconds that the resource
waits to get unlocked before this operation returns an error;
otherwise, this parameter is ignored. Defaults to
VI_TMO_IMMEDIATE.

		Return values:		
		vi : integer

		Unique logical identifier reference to a session.

open_default_resource_manager

Return a session to the Default Resource Manager resource.

		Call:		session = open_default_resource_manager()

		VISA name:		viOpenDefaultRM

		Parameters:		None.

		Return values:		
		session : integer

		Unique logical identifier to a Default Resource Manager session.

get_default_resource_manager

This is a deprecated alias for open_default_resource_manager.

out_8, out_16, out_32

		Call:		
out_8(vi, space, offset, value_8)

out_16(vi, space, offset, value_16)

out_32(vi, space, offset, value_32)

		VISA name:		viOut8, viOut16, viOut32

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		space : integer

		Specifies the address space.

		offset : integer

		Offset in bytes of the address or register to which to write.

		value_8, value_16, value_32: integer

		Data to write to bus (8 bits for out_8, 16 bits for out_16, and 32 bits
for out_32).

		Return values:		None.

parse_resource

Parse a resource string to get the interface information.

		Call:		interface_type, interface_board_number = parse_resource(session,
resource_name)

		VISA name:		viParseRsrc

		Parameters:		
		session : integer

		Resource Manager session (should always be the Default Resource Manager
for VISA returned from open_default_resource_manager).

		resource_name : string

		Unique symbolic name of a resource.

		Return values:		
		interface_type : integer

		Interface type of the given resource string.

		interface_board_number : integer

		Board number of the interface of the given resource string.

parse_resource_extended

Parse a resource string to get extended interface information.

Attention: Calling this function may raise an AttributeError because
some older VISA implementation don’t have the function viParseRsrcEx.

		Call:		interface_type, interface_board_number, resource_class,
unaliased_expanded_resource_name, alias_if_exists =
parse_resource_extended(session, resource_name)

		VISA name:		viParseRsrcEx

		Parameters:		
		session : integer

		Resource Manager session (should always be the Default Resource Manager
for VISA returned from open_default_resource_manager).

		resource_name : string

		Unique symbolic name of a resource.

		Return values:		
		interface_type : integer

		Interface type of the given resource string.

		interface_board_number : integer

		Board number of the interface of the given resource string.

		resource_class : string

		Specifies the resource class (for example “INSTR”) of the given
resource string.

		unaliased_expanded_resource_name : string

		This is the expanded version of the given resource string. The format
should be similar to the VISA-defined canonical resource name.

		alias_if_exists : string

		Specifies the user-defined alias for the given resource string, if a
VISA implementation allows aliases and an alias exists for the given
resource string. If not, this is None.

peek_8, peek_16, peek_32

Read an 8-bit, 16-bit, or 32-bit value from the specified address.

		Call:		
value_8 = peek_8(vi, address)

value_16 = peek_16(vi, address)

value_32 = peek_32(vi, address)

		VISA name:		viPeek8, viPeek16, viPeek32

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		address : ViAddr

		Specifies the source address to read the value.

		Return values:		
		value_8, value_16, value_32 : integer

		Data read from bus (8 bits for peek_8, 16 bits for peek_16, and 32 bits
for peek_32).

poke_8, poke_16, poke_32

Write an 8-bit, 16-bit, or 32-bit value to the specified address.

		Call:		
poke_8(vi, address, value_8)

poke_16(vi, address, value_16)

poke_32(vi, address, value_32)

		VISA name:		vipoke_8

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		address : integer

		Specifies the destination address to store the value.

		value_8, value_16, value_32 : integer

		Data to write to bus (8 bits for poke_8, 16 bits for poke_16, and 32
bits for poke_32).

		Return values:		None.

printf

Convert, format, and send the parameters ... to the device as specified by
the format string.

Warning

The current implementation only supports the following C data types:
long, double and char* (strings). Thus, you can only use these
three data types in format strings for printf, scanf and the like.

		Call:		printf(vi, write_format, ...)

		VISA name:		viPrintf

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		write_format : string

		String describing the format for arguments.

		... : integers, floats, or strings

		Arguments sent to the device according to write_format.

		Return values:		None.

queryf

Perform a formatted write and read through a single operation invocation.

Warning

The current implementation only supports the following C data types:
long, double and char* (strings). Thus, you can only use these
three data types in format strings for printf, scanf and the like.

		Call:		value1, value2, ... = queryf(vi, write_format, read_format, (...), ...,
maximal_string_length = 1024)

		VISA name:		viQueryf

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		write_format : string

		String describing the format for arguments.

		read_format : string

		String describing the format for arguments.

		(...) : tuple of integers, floats, or strings

		Arguments sent to the device according to write_format. May be
None.

		... : integers, floats, or strings

		Arguments to be read from the device according to read_format. It’s
totally insignificant which values they have, they serve just as a
cheap way to determine what types are to be expected. So actually this
argument list shouldn’t be necessary, but with the current
implementation, it is, sorry.

These arguments may be (however needn’t be) the same names used for
storing the result values. Alternatively, you can give literals.

		maximal_string_length : integer : keyword argument

		The maximal length assumed for string result arguments. Note that
string results must never exceed this length. It defaults to 1024.

		Return values:		
		value1, value2, ... : integers, floats, or strings

		Arguments read from the device according to read_format. Of course,
this must be the same sequence (as far as data types are concerned) as
the given argument list ... above.

read

Read data from device synchronously.

		Call:		buffer = read(vi, count)

		VISA name:		viRead

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		count : integer

		Maximal number of bytes to be read.

		Return values:		
		buffer : string

		Represents the buffer with the received data from device.

read_asynchronously

Read data from device asynchronously.

		Call:		buffer, job_id = read_asynchronously(vi, count)

		VISA name:		viReadAsync

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		count : integer

		Maximal number of bytes to be read.

		Return values:		
		buffer : ctypes string buffer

		Represents the buffer with the data received from device. It’s not a
native Python data type because it’s filled in the background
(i.e. asynchronously). After you assured that the reading is finished,
you get its value with:

buffer.raw[:return_count]

You get return_count via the attribute VI_ATTR_RET_COUNT. See
the VISA reference [http://digital.ni.com/manuals.nsf/websearch/87E52268CF9ACCEE86256D0F006E860D] for further information.

		job_id : ViJobId

		Represents the location of a variable that will be set to the job
identifier of this asynchronous read operation.

read_stb

Read a status byte of the service request.

		Call:		status = read_stb(vi)

		VISA name:		viReadSTB

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		Return values:		
		status : integer

		Service request status byte.

read_to_file

Read data synchronously, and store the transferred data in a file.

		Call:		return_count = read_to_file(vi, filename, count)

		VISA name:		viReadToFile

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		file_name : string

		Name of file to which data will be written.

		count : integer

		Maximal number of bytes to be read.

		Return values:		
		return_count : integer

		Number of bytes actually transferred.

scanf

Read, convert, and format data using the format specifier. Store the formatted
data in the given optional parameters.

Warning

The current implementation only supports the following C data types:
long, double and char* (strings). Thus, you can only use these
three data types in format strings for printf, scanf and the like.

		Call:		value1, value2, ... = scanf(vi, read_format, ..., maximal_string_length
= 1024)

		VISA name:		viScanf

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		read_format : string

		String describing the format for arguments.

		... : integers, floats, or strings

		Arguments to be read from the device according to read_format. It’s
totally insignificant which values they have, they serve just as a
cheap way to determine what types are to be expected. So actually this
argument list shouldn’t be necessary, but with the current
implementation, it is, sorry.

These arguments may be (however needn’t be) the same names used for
storing the result values. Alternatively, you can give literals.

		maximal_string_length : integer : keyword argument

		The maximal length assumed for string result arguments. Note that
string results must never exceed this length. It defaults to 1024.

		Return values:		
		value1, value2, ... : integers, floats, or strings

		Arguments read from the device according to read_format. Of course,
this must be the same sequence (as far as data types are concerned) as
the given argument list ... above.

set_attribute

Set the state of an attribute.

		Call:		set_attribute(vi, attribute, attribute_state)

		VISA name:		viSetAttribute

		Parameters:		
		vi : integer, ViEvent, or ViFindList

		Unique logical identifier to a session.

		attribute : integer

		Session, event, or find list attribute for which the state is
modified.

		attribute_state : integer

		The state of the attribute to be set for the specified resource. The
interpretation of the individual attribute value is defined by the
resource.

		Return values:		None.

set_buffer

Set the size for the formatted I/O and/or serial communication buffer(s).

		Call:		set_buffer(vi, mask, size)

		VISA name:		viSetBuf

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		mask : integer

		Specifies the type of buffer.

		size : integer

		The size to be set for the specified buffer(s).

		Return values:		None.

sprintf

Same as printf, except the data is written to a user-specified buffer rather
than the device.

Warning

The current implementation only supports the following C data types:
long, double and char* (strings). Thus, you can only use these
three data types in format strings for printf, scanf and the like.

		Call:		buffer = sprintf(vi, write_format, ..., buffer_length = 1024)

		VISA name:		viSPrintf

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		write_format : string

		String describing the format for arguments.

		... : integers, floats, or strings

		Arguments sent to the buffer according to write_format.

		buffer_length : integer : keyword argument

		Length of the user-specified buffer in bytes. Defaults to 1024.

		Return values:		
		buffer : string

		Buffer where the formatted data was written to.

sscanf

Same as scanf, except that the data is read from a user-specified buffer
instead of a device.

Warning

The current implementation only supports the following C data types:
long, double and char* (strings). Thus, you can only use these
three data types in format strings for printf, scanf and the like.

		Call:		value1, value2, ... = sscanf(vi, buffer, read_format, ...,
maximal_string_length = 1024)

		VISA name:		viSScanf

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		buffer : string

		Buffer from which data is read and formatted.

		read_format : string

		String describing the format for arguments.

		... : integers, floats, or strings

		Arguments to be read from the device according to read_format. It’s
totally insignificant which values they have, they serve just as a
cheap way to determine what types are to be expected. So actually this
argument list shouldn’t be necessary, but with the current
implementation, it is, sorry.

These arguments may be (however needn’t be) the same names used for
storing the result values. Alternatively, you can give literals.

		maximal_string_length : integer : keyword argument

		The maximal length assumed for string result arguments. Note that
string results must never exceed this length. It defaults to 1024.

		Return values:		
		value1, value2, ... : integers, floats, or strings

		Arguments read from the device according to read_format. Of course,
this must be the same sequence (as far as data types are concerned) as
the given argument list ... above.

status_description

Return a user-readable description of the status code passed to the operation.

		Call:		description = status_description(vi, status)

		VISA name:		viStatusDesc

		Parameters:		
		vi : integer, ViEvent, or ViFindList

		Unique logical identifier to a session.

		status : integer

		Status code to interpret.

		Return values:		
		description : string

		The user-readable string interpretation of the status code passed to
the operation.

terminate

Request a VISA session to terminate normal execution of an operation.

		Call:		terminate(vi, degree, job_id)

		VISA name:		viTerminate

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		degree : integer

		VI_NULL

		job_id : ViJobId

		Specifies an operation identifier.

		Return values:		None.

uninstall_handler

Uninstall handlers for events.

		Call:		uninstall_handler(vi, event_type, handler, user_handle)

		VISA name:		viUninstallHandler

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		event_type : integer

		Logical event identifier.

		handler : callable

		Interpreted as a valid reference to a handler to be uninstalled by a
client application.

		user_handle : ctypes type : optional

		A value specified by an application that can be used for identifying
handlers uniquely in a session for an event. It must be the object
returned by install_handler. Consequently, it defaults to
None.

		Return values:		None.

unlock

Relinquish a lock for the specified resource.

		Call:		unlock(vi)

		VISA name:		viUnlock

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		Return values:		None.

unmap_address

Unmap memory space previously mapped by map_address.

		Call:		unmap_address(vi)

		VISA name:		viUnmapAddress

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		Return values:		None.

unmap_trigger

Undo a previous map from the specified trigger source line to the specified
destination line.

		Call:		unmap_trigger(vi, trigger_source, trigger_destination)

		VISA name:		viUnmapTrigger

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		trigger_source : integer

		Source line used in previous map.

		trigger_destination : integer

		Destination line used in previous map.

		Return values:		None.

usb_control_in

Request arbitrary data from the USB device on the control port.

		Call:		buffer = usb_control_in(vi, request_type_bitmap_field,
request_id, request_value, index, length)

		VISA name:		viUsbControlIn

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		request_type_bitmap_field : integer

		Bitmap field for defining the USB control port request. The bitmap
fields are as defined by the USB specification. The direction bit must
be device-to-host.

		request_id : integer

		Request ID for this transfer. The meaning of this value depends on
request_type_bitmap_field.

		request_value : integer

		Request value for this transfer.

		index : integer

		Specifies the interface or endpoint index number, depending on
request_type_bitmap_field.

		length : integer : optional

		Number of data in bytes to request from the device during the Data
stage. If this value is not given or 0, an empty string is returned.

		Return values:		
		buffer : string

		Actual data received from the device during the Data stage. If
length is not given or 0, an empty string is returned.

usb_control_out

Send arbitrary data to the USB device on the control port.

		Call:		usb_control_out(vi, request_type_bitmap_field, request_id, request_value,
index, buffer)

		VISA name:		viUsbControlOut

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		request_type_bitmap_field : integer

		Bitmap field for defining the USB control port request. The bitmap
fields are as defined by the USB specification. The direction bit must
be host-to-device.

		request_id : integer

		Request ID for this transfer. The meaning of this value depends on
request_type_bitmap_field.

		request_value : integer

		Request value for this transfer.

		index : integer

		Specifies the interface or endpoint index number, depending on
request_type_bitmap_field.

		buffer : string : optional

		Actual data to send to the device during the Data stage. If not given,
nothing is sent.

		Return values:		None.

vprintf, vqueryf, vscanf, vsprintf, vsscanf

These variants make no sense in Python, so I realised them as mere aliases
(just drop the “v”).

vxi_command_query

Send the device a miscellaneous command or query and/or retrieve the response
to a previous query.

		Call:		vxi_command_query(vi, mode, command)

		VISA name:		viVxiCommandQuery

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		mode : integer

		Specifies whether to issue a command and/or retrieve a response.

		command : integer

		The miscellaneous command to send.

		Return values:		
		response : integer

		The response retrieved from the device. If the mode specifies just
sending a command, this parameter may be VI_NULL.

wait_on_event

Wait for an occurrence of the specified event for a given session.

		Call:		out_event_type, out_context = wait_on_event(vi, in_event_type, timeout)

		VISA name:		viWaitOnEvent

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		in_event_type : integer

		Logical identifier of the event(s) to wait for.

		timeout : integer

		Absolute time period in milliseconds that the resource shall wait for a
specified event to occur before returning the time elapsed error.

		Return values:		
		out_event_type : integer

		Logical identifier of the event actually received.

		out_context : ViEvent

		A handle specifying the unique occurrence of an event.

write

Write data to device synchronously.

		Call:		return_count = write(vi, buffer)

		VISA name:		viWrite

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		buffer : string

		Contains the data block to be sent to the device.

		Return values:		
		return_count : integer

		The number of bytes actually transferred.

write_asynchronously

Write data to device asynchronously.

		Call:		job_id = write_asynchronously(vi, buffer)

		VISA name:		viWriteAsync

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		buffer : string

		Contains the data block to be sent to the device.

		Return values:		
		job_id : ViJobId

		The job identifier of this asynchronous write operation.

write_from_file

Take data from a file and write it out synchronously.

		Call:		return_count = write_from_file(vi, filename, count)

		VISA name:		viWriteFromFile

		Parameters:		
		vi : integer

		Unique logical identifier to a session.

		filename : string

		Name of file from which data will be read.

		count : integer

		Maximal number of bytes to be written.

		Return values:		
		return_count : integer

		Number of bytes actually transferred.

 © Copyright 2012 Florian Bauer, 2011 Kevin Saff, 2005-2011 Torsten Bronger, Gregor Thalhammer.
 Last updated on Feb 27, 2017.
 Created using Sphinx 1.3.5.

_static/up.png

_static/down.png

