PyVISA Documentation
Release 1.10.1

PyVISA Authors

Sep 11, 2019

Contents

1 General overview 3
L1 Userguide o o o e e e e e e e e 3
1.2 Advanced tOPIiCSo e e e e e e 20
1.3 Frequently asked questions 25
L4 APL . o o e 35
Python Module Index 191
Index 193

PyVISA Documentation, Release 1.10.1

PyVISA

PyVISA is a Python package that enables you to control all kinds of measurement devices independently of the
interface (e.g. GPIB, RS232, USB, Ethernet). As an example, reading self-identification from a Keithley Multimeter
with GPIB number 12 is as easy as three lines of Python code:

>>> import visa

>>> rm = visa.ResourceManager ()

>>> rm.list_resources ()

("ASRL1::INSTR', 'ASRL2::INSTR', 'GPIBO::12::INSTR')
>>> inst = rm.open_resource ('GPIBO::12::INSTR")

>>> print (inst.query ("+*IDN?"))

(That’s the whole program; really!) It works on Windows, Linux and Mac; with arbitrary adapters (e.g. National
Instruments, Agilent, Tektronix, Stanford Research Systems).

Contents 1

PyVISA Documentation, Release 1.10.1

2 Contents

CHAPTER 1

General overview

The programming of measurement instruments can be real pain. There are many different protocols, sent over many
different interfaces and bus systems (e.g. GPIB, RS232, USB, Ethernet). For every programming language you want
to use, you have to find libraries that support both your device and its bus system.

In order to ease this unfortunate situation, the Virtual Instrument Software Architecture (VISA) specification was de-
fined in the middle of the 90ies. VISA is a standard for configuring, programming, and troubleshooting instrumentation
systems comprising GPIB, VXI, PXI, Serial, Ethernet, and/or USB interfaces.

Today VISA is implemented on all significant operating systems. A couple of vendors offer VISA libraries, partly
with free download. These libraries work together with arbitrary peripherical devices, although they may be limited
to certain interface devices, such as the vendor’s GPIB card.

The VISA specification has explicit bindings to Visual Basic, C, and G (LabVIEW’s graphical language). Python
can be used to call functions from a VISA shared library (.dll, .so, .dylib) allowing to directly leverage the standard
implementations. In addition, Python can be used to directly access most bus systems used by instruments which
is why one can envision to implement the VISA standard directly in Python (see the PyVISA-Py project for more
details). PyVISA is both a Python wrapper for VISA shared libraries but can also serve as a front-end for other VISA
implementation such as PyVISA-Py.

1.1 User guide

This section of the documentation will focus on getting you started with PyVISA. The following sections will cover
how to install and configure the library, how to communicate with your instrument and how to debug standard com-
munications issues.

1.1.1 Installation

PyVISA is a frontend to the VISA library. It runs on Python 2.7 and 3.4+.

You can install it using pip:

http://www.pip-installer.org/

PyVISA Documentation, Release 1.10.1

$ pip install -U pyvisa

Backend

In order for PyVISA to work, you need to have a suitable backend. PyVISA includes a backend that wraps the National
Instruments’s VISA library. However, you need to download and install the library yourself (See NI-VISA Installa-
tion). There are multiple VISA implementations from different vendors. PyVISA is tested only against National
Instruments’s VISA.

Warning: PyVISA works with 32- and 64- bit Python and can deal with 32- and 64-bit VISA libraries without
any extra configuration. What PyVISA cannot do is open a 32-bit VISA library while running in 64-bit Python (or
the other way around).

You need to make sure that the Python and VISA library have the same bitness

Alternatively, you can install PyVISA-Py which is a pure Python implementation of the VISA standard. You can
install it using pip:

$ pip install -U pyvisa-py

Note: At the moment, PyVISA-Py implements only a limited subset of the VISA standard and does not support all
protocols on all bus systems. Please refer to its documentation for more details.

Testing your installation

That’s all! You can check that PyVISA is correctly installed by starting up python, and creating a ResourceManager:

>>> import visa
>>> rm = visa.ResourceManager ()
>>> print (rm.list_resources())

If you encounter any problem, take a look at the Miscellaneous questions. There you will find the solutions to common
problem as well as useful debugging techniques. If everything fails, feel free to open an issue in our issue tracker

Using the development version

You can install the latest development version (at your own risk) directly form GitHub:

$ pip install -U https://github.com/pyvisa/pyvisa/zipball/master

Note: If you have an old system installation of Python and you don’t want to mess with it, you can try Anaconda. It
is a free Python distribution by Continuum Analytics that includes many scientific packages.

4 Chapter 1. General overview

http://ni.com/visa/
http://ni.com/visa/
http://ni.com/visa/
http://ni.com/visa/
http://pyvisa-py.readthedocs.io/en/latest/
http://www.pip-installer.org/
https://github.com/pyvisa/pyvisa/issues
https://github.com/pyvisa/pyvisa
https://www.anaconda.com/distribution/

PyVISA Documentation, Release 1.10.1

1.1.2 Configuring the backend

Currently there are two backends available: The one included in pyvisa, which uses the NI library, and the backend
provided by pyvisa-py, which is a pure python implementation of the VISA library. If no backend is specified, pyvisa
uses the NI backend if the NI library has been installed (see next section for details). Failing that, it uses the pyvisa-py
backend.

You can also select a desired backend by passing a parameter to the ResourceManager, shown here for pyvisa-py:

>>> visa.ResourceManager ('@py"')

Alternatively it can also be selected by setting the environment variable PYVISA_LIBRARY. It takes the same values
as the ResourceManager constructor.

Configuring the NI backend

Note: The NI backend requires that you install first the NI-VISA library. You can get info here: (NVI-VISA Installation)

In most cases PyVISA will be able to find the location of the shared visa library. If this does not work or you want to
use another one, you need to provide the library path to the ResourceManager constructor:

>>> rm = ResourceManager ('Path to library')

You can make this library the default for all PyVISA applications by using a configuration file called .pyvisarc
(mind the leading dot) in your home directory.

Operating System Location

Windows NT <root>\WINNT\Profiles\<username>

Windows 2000, XP and 2003 | <root>\Documents and Settings\<username>
Windows Vista, 7 or 8 <root>\Users\<username>

Mac OS X /Users/<username>

Linux /home/<username> (depends on the distro)

For example in Windows XP, place it in your user folder “Documents and Settings” folder, e.g. C:\Documents
and Settings\smith\.pyvisarc if “smith” is the name of your login account.

This file has the format of an INI file. For example, if the library is at /usr/1lib/libvisa.so.7, the file .
pyvisarc must contain the following:

[Paths]

VISA library: /usr/lib/libvisa.so.7

Please note that [Paths] is treated case-sensitively.

You can define a site-wide configuration file at /usr/share/pyvisa/.pyvisarc (It may also be /usr/
local/... depending on the location of your Python). Under Windows, this file is usually placed at
c:\Python27\share\pyvisa\.pyvisarc.

If you encounter any problem, take a look at the Frequently asked questions. There you will find the solutions to
common problem as well as useful debugging techniques. If everything fails, feel free to open an issue in our issue
tracker

1.1. User guide 5

http://en.wikipedia.org/wiki/Home_directory
https://github.com/pyvisa/pyvisa/issues
https://github.com/pyvisa/pyvisa/issues

PyVISA Documentation, Release 1.10.1

1.1.3 Communicating with your instrument

Note: If you have been using PyVISA before version 1.5, you might want to read Migrating from PyVISA < 1.5.

An example

Let’s go in medias res and have a look at a simple example:

>>> import visa

>>> rm = visa.ResourceManager ()

>>> rm.list_resources ()

("ASRL1::INSTR', 'ASRL2::INSTR', 'GPIBO::14::INSTR')

>>> my_instrument = rm.open_resource ('GPIB0::14::INSTR")
>>> print (my_instrument.query ('+IDN?"))

This example already shows the two main design goals of PyVISA: preferring simplicity over generality, and doing it
the object-oriented way.

After importing visa, we create a ResourceManager object. If called without arguments, PyVISA will prefer
the default backend (NI) which tries to find the VISA shared library for you. If it fails it will fall back to pyvisa-py if
installed. You can check what backend is used and the location of the shared library used, if relevant, simply by:

>>> print (rm)
<ResourceManager ('/path/to/visa.so')>

Note: In some cases, PyVISA is not able to find the library for you resulting in an OSError. To fix it, find the
library path yourself and pass it to the ResourceManager constructor. You can also specify it in a configuration file as
discussed in Configuring the backend.

Once that you have a ResourceManager, you can list the available resources using the 1ist_resources
method. The output is a tuple listing the VISA resource names. You can use a dedicated regular expression syntax to
filter the instruments discovered by this method. The syntax is described in details in 1ist_resources (). The
default value is ‘?*::INSTR’ which means that by default only instrument whose resource name ends with ‘::INSTR’
are listed (in particular USB RAW resources and TCPIP SOCKET resources are not listed).

In this case, there is a GPIB instrument with instrument number 14, so you ask the ResourceManager to open
“‘GPIB0::14::INSTR’” and assign the returned object to the my_instrument.

Notice open_resource has given you an instance of GPIBInstrument class (a subclass of the more generic
Resource).

>>> print (my_instrument)
<GPIBInstrument ('GPIB::14")>

There many Resource subclasses representing the different types of resources, but you do not have to worry as the
ResourceManager will provide you with the appropriate class. You can check the methods and attributes of each
class in the Resource classes

Then, you query the device with the following message: '\ «IDN?'. Which is the standard GPIB message for “what
are you?” or —in some cases — “what’s on your display at the moment?”. query is a short form for a write operation
to send a message, followed by a read.

So:

6 Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

>>> my_instrument.query ("+«IDN?")

is the same as:

>>> my_instrument.write ('+«IDN?")
>>> print (my_instrument.read())

Note: You can access all the opened resources by calling rm.list_opened_resources (). This will return a
list of Resource, however note that this list is not dynamically updated.

Getting the instrument configuration right

For most instruments, you actually need to properly configure the instrument so that it understands the message sent
by the computer (in particular how to identifies the end of the commands) and so that computer knows when the
instrument is done talking. If you don’t you are likely to see a VisaIOError reporting a timeout.

For message based instruments (which covers most of the use cases), this usually consists in properly setting the
read termination and write termination attribute of the resource. Resources have more attributes de-
scribed in Resources, but for now we will focus on those two.

The first place to look for the values you should set for your instrument is the manual. The information you are looking
is usually located close to the beginning of the IO operation section of the manual. If you cannot find the value, you
can try to iterate through a couple of standard values but this is not recommended approach.

Once you have that information you can try to configure your instrument and start communicating as follows:

>>> my_instrument.read_termination = '\n'
>>> my_instrument.write_termination = '\n'
>>> my_instrument.query ('+«IDN?")

Here we use ‘n’ known as ‘line feed’. This is a common value, another one is ‘r’ i.e. ‘carriage return’, and in some
cases the null byte ‘0’ is used.

In in an ideal world, this will work and you will be able to get an answer from your instrument. If it does not, it means
the settings are likely wrong (the documentation does not always shine by its clarity). In the following we will discuss
common debugging tricks, if nothing works feel free to post on the PyVISA issue tracker. If you do be sure to describe
in detail your setup and what you already attempted.

Note: The particular case of reading back large chunk of data either in ASCII or binary format is not discussed below
but in Reading and Writing values.

Making sure the instrument understand the command

When using query, we are testing both writing to and reading from the instrument. The first thing to do is to try to
identify if the issue occurs during the write or the read operation.

If your instrument has a front panel, you can check for errors (some instrument will display a transient message right
after the read). If an error occurs, it may mean your command string contains a mistake or the instrument is using a
different set of command (some instrument supports both a legacy set of commands and SCPI commands). If you see
no error it means that either the instrument did not detect the end of your message or you just cannot read it. The next
step is to determine in what situation we are.

1.1. User guide 7

https://github.com/pyvisa/pyvisa/issues

PyVISA Documentation, Release 1.10.1

To do so, you can look for a command that would produce a visible/measurable change on the instrument and send
it. In the absence of errors, if the expected change did not occur it means the instrument did not understand that the
command was complete. This points out to an issue with the write termination. At this stage, you can go back
to the manual (some instruments allow to switch between the recognized values), or try standards values (such as ‘n’,
‘r’, combination of those two, ‘0’).

Assuming you were able to confirm that the instrument understood the command you sent, it means the reading part
is the issue, which is easier to troubleshoot. You can try different standard values for the read termination,
but if nothing works you can use the read_bytes () method. This method will read at most the number of bytes
specified. So you can try reading one byte at a time till you encounter a time out. When that happens most likely the
last character you read is the termination character. Here is a quick example:

my_instrument.write ('«IDN?")
while True:
print (my_instrument.read_bytes (1))

If read_bytes () times out on the first read, it actually means that the instrument did not answer. If the instrument
is old it may be because your are too fast for it, so you can try waiting a bit before reading (using time.sleep from
Python standard library). Otherwise, you either use a command that does not cause any answer or actually your write
does not work (go back up a couple of paragraph).

The above focused on using only PyVISA, if you are running Windows, or MacOS you are likely to have access to
third party tools that can help. Some tips to use them are given in the next section.

Note: Some instruments do not react well to a communication error, and you may have to restart it to get it to work
again.

Using third-party softwares

The implementation of VISA from National Instruments and Keysight both come with tools (NIMax, Keysight Con-
nection Expert) that can be used to figure out what is wrong with your communication setup.

In both cases, you can open an interactive communication session to your instrument and tune the settings using a GUI
(which can make things easier). The basic procedure is the one described above, if you can make it work in one of
those tools you should be able, in most cases, to get it to work in PyVISA. However if it does not work using those
tools, it won’t work in PyVISA.

Hopefully those simple tips will allow you to get through. In some cases, it may not be the case and you are always
welcome to ask for help (but realize that the maintainers are unlikely to have access to the instrument you are having
trouble with).

1.1.4 A more complex example

The following example shows how to use SCPI commands with a Keithley 2000 multimeter in order to measure 10
voltages. After having read them, the program calculates the average voltage and prints it on the screen.

I’ll explain the program step-by-step. First, we have to initialize the instrument:

>>> keithley = rm.open_resource ("GPIB::12")
>>> keithley.write ("xrst; status:preset; *cls")

Here, we create the instrument variable keithley, which is used for all further operations on the instrument. Immediately
after it, we send the initialization and reset message to the instrument.

8 Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

The next step is to write all the measurement parameters, in particular the interval time (500ms) and the number of
readings (10) to the instrument. I won’t explain it in detail. Have a look at an SCPI and/or Keithley 2000 manual.

>>> interval_ in ms = 500

>>> number_of_readings = 10

>>> keithley.write ("status:measurement:enable 512; xsre 1")

>>> keithley.write ("sample:count " % number_of_readings)

>>> keithley.write("trigger:source bus")

>>> keithley.write("trigger:delay " % (interval_in_ms / 1000.0))
>>> keithley.write("trace:points " % number_of_readings)

>>> keithley.write ("trace:feed sensel; trace:feed:control next")

Okay, now the instrument is prepared to do the measurement. The next three lines make the instrument waiting for a
trigger pulse, trigger it, and wait until it sends a “service request’:

>>> keithley.write("initiate™)
>>> keithley.assert_trigger ()
>>> keithley.wait_for_srqg()

With sending the service request, the instrument tells us that the measurement has been finished and that the results
are ready for transmission. We could read them with keithley.query(“trace:data?”) however, then we’d get:

-000.0004E+0,-000.0005E+0,-000.0004E+0,-000.0007E+0Q,
-000.0000E+0,-000.0007E+0,-000.0008E+0,—-000.0004E+0,
-000.0002E+0,-000.0005E+0

which we would have to convert to a Python list of numbers. Fortunately, the query_ascii_values () method
does this work for us:

>>> voltages = keithley.query_ascii_values ("trace:data?")
>>> print ("Average voltage: ", sum(voltages) / len(voltages))

Finally, we should reset the instrument’s data buffer and SRQ status register, so that it’s ready for a new run. Again,
this is explained in detail in the instrument’s manual:

>>> keithley.query ("status:measurement?")
>>> keithley.write("trace:clear; trace:feed:control next")

That’s it. 18 lines of lucid code. (Well, SCPI is awkward, but that’s another story.)

1.1.5 Reading and Writing values

Some instruments allow to transfer to and from the computer larger datasets with a single query. A typical example is
an oscilloscope, which you can query for the whole voltage trace. Or an arbitrary wave generator to which you have
to transfer the function you want to generate.

Basically, data like this can be transferred in two ways: in ASCII form (slow, but human readable) and binary (fast,
but more difficult to debug).

PyVISA Message Based Resources have different methods for this called read ascii_values(),
query_ascii_values () and read binary values (), query binary values ().

Reading ASCII values

If your oscilloscope (open in the variable inst) has been configured to transfer data in ASCII when the CURV?
command is issued, you can just query the values like this:

1.1. User guide 9

PyVISA Documentation, Release 1.10.1

>>> values = inst.query_ascii_values ('CURV?")

values will be 1ist containing the values from the device.

In many cases you do not want a 1ist but rather a different container type such as a numpy .array. You can of
course cast the data afterwards like this:

>>> values = np.array(inst.query_ascii_values ('CURV?"))

but sometimes it is much more efficient to avoid the intermediate list, and in this case you can just specify the container
type in the query:

’>>> values = inst.query_ascii_values ('CURV?', container=numpy.array)

In container, you can have any callable/type that takes an iterable.

Note: When using numpy.array or numpy.ndarray, PyVISA will use numpy routines to optimize the conversion by
avoiding the use of an intermediate representation.

Some devices transfer data in ASCII but not as decimal numbers but rather hex or oct. Or you might want to receive
an array of strings. In that case you can specify a converter. For example, if you expect to receive integers as hex:

>>> values = inst.query_ascii_values ('CURV?', converter='x")

converter can be one of the Python string formatting codes. But you can also specify a callable that takes a single
argument if needed. The default converteris '£"'.

Finally, some devices might return the values separated in an uncommon way. For example if the returned values are
separated by a ' $' you can do the following call:

>>> values = inst.query_ascii_values ('CURV?', separator='S$")

You can provide a function to takes a string and returns an iterable. Default value for the separator is ', ' (comma)

Reading binary values

If your oscilloscope (open in the variable inst) has been configured to transfer data in BINARY when the CURV?
command is issued, you need to know which type datatype (e.g. uint8, int8, single, double, etc) is being used. PyVISA
use the same naming convention as the struct module.

You also need to know the endianness. PyVISA assumes little-endian as default. If you have doubles d in big endian
the call will be:

>>> values = inst.query_binary_values ('CURV?', datatype='d', is_big_endian=True)

You can also specify the output container type, just as it was shown before.

By default, PyVISA will assume that the data block is formatted according to the IEEE convention. If your instrument
uses HP data block you can pass header_fmt="'hp"' to read_binary_values. If your instrument does not use
any header for the data simply header_fmt="empty".

By default PyVISA assumes, that the instrument will add the termination character at the end of the data block and
actually makes sure it reads it to avoid issues. This behavior fits well a number of devices. However some devices omit
the termination character, in which cases the operation will timeout. In this situation, first makes sure you can actually
read from the instrument by reading the answer using the read_raw function (you may need to call it multiple time),
and check that the advertized length of the block match what you get from your instrument (plus the header). If it is so,

10 Chapter 1. General overview

https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/struct.html#format-characters

PyVISA Documentation, Release 1.10.1

then you can safely pass expect_termination=False, and PyVISA will not look for a termination character at
the end of the message.

If you can read without any problem from your instrument, but cannot retrieve the full message when using this
method (VI_ERROR_CONN_LOST, VI_ERROR_INV_SETUP, or Python simply crashes), try passing different
values for chunk_size " (the default is 20%1024). The underlying mechanism for this
issue is not clear but changing " " chunk_size has been used to work around it. Note that using
larger chunk sizes for large transfer may result in a speed up of the transfer.

In some cases, the instrument may use a protocol that does not indicate how many bytes will be transferred. The
Keithley 2000 for example always return the full buffer whose size is reported by the ‘trace:points?” command. Since
a binary block may contain the termination character, PyVISA need to know how many bytes to expect. For those
case, you can pass the expected number of points using the data_points keyword argument. The number of bytes
will be inferred from the datatype of the block.

Writing ASCII values

To upload a function shape to arbitrary wave generator, the command might be WLISt:WAVeform:DATA
<waveform name>,<function data> where <waveform name> tells the device under which name to
store the data.

>>> values = list (range(100))
>>> inst.write_ascii_values ('WLISt:WAVeform:DATA somename, ', values)

Again, you can specify the converter code.

>>> inst.write_ascii_values ('WLISt:WAVeform:DATA somename, ', values, converter='x")

converter can be one of the Python string formatting codes. But you can also specify a callable that takes a single
argument if needed. The default converteris '£'.

The separator can also be specified just like in query_ascii_values.

>>> inst.write_ascii_values ('WLISt:WAVeform:DATA somename, ', values, converter='x', |
—separator='5$")

You can provide a function to takes a iterable and returns an string. Default value for the separatoris ', ' (comma)

Writing binary values

To upload a function shape to arbitrary wave generator, the command might be WLISt:WAVeform:DATA
<waveform name>, <function data> where <waveform name> tells the device under which name to
store the data.

>>> values = list (range(100))
>>> inst.write_binary_values ('WLISt:WAVeform:DATA somename, ', values)

Again you can specify the datatype and endianness.

>>> inst.write_binary_values ('WLISt:WAVeform:DATA somename, ', values, datatype='d',
—~is_big_endian=False)

1.1. User guide 11

https://docs.python.org/3/library/string.html#formatspec

PyVISA Documentation, Release 1.10.1

When things are not what they should be

PyVISA provides an easy way to transfer data from and to the device. The methods described above work fine for 99%
of the cases but there is always a particular device that do not follow any of the standard protocols and is so different
that cannot be adapted with the arguments provided above.

In those cases, you need to get the data:

>>> inst.write ('CURV?")
>>> data = inst.read_raw/()

and then you need to implement the logic to parse it.

Alternatively if the read_raw call fails you can try to read just a few bytes using:

>>> inst.write ('CURV?")
>>> data = inst.read_bytes (1)

If this call fails it may mean that your instrument did not answer, either because it needs more time or because your
first instruction was not understood.

1.1.6 Resources

A resource represents an instrument, e.g. a measurement device. There are multiple classes derived from resources
representing the different available types of resources (eg. GPIB, Serial). Each contains the particular set of attributes
an methods that are available by the underlying device.

You do not create this objects directly but they are returned by the open resource () method
of a ResourceManager. In general terms, there are two main groups derived from Resource,
MessageBasedResource and RegisterBasedResource.

Note: The resource Python class to use is selected automatically from the resource name. However, you can force a
Resource Python class:

>>> from pyvisa.resources import MessageBasedResource
>>> inst = rm.open('ASRL1::INSTR', resource_pyclass=MessageBasedResource)

The following sections explore the most common attributes of Resource and MessageBased (Serial, GPIB, etc)
which are the ones you will encounter more often. For more information, refer to the AP/.

Attributes Resource

session

Each communication channel to an instrument has a session handle which is unique. You can get this value:

>>> my_device.session
10442240

If the resource is closed, an exception will be raised:

12 Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

>>> inst.close ()
>>> inst.session
Traceback (most recent call last):

pyvisa.errors.InvalidSession: Invalid session handle. The resource might be closed.

timeout

Very most VISA 1/0 operations may be performed with a timeout. If a timeout is set, every operation that takes longer
than the timeout is aborted and an exception is raised. Timeouts are given per instrument in milliseconds.

For all PyVISA objects, a timeout is set with

’ my_device.timeout = 25000

Here, my_device may be a device, an interface or whatever, and its timeout is set to 25 seconds. To set an infinite
timeout, set it to None or £loat ('+inf') or:

’ del my_device.timeout

To set it to immediate, set it to O or a negative value. (Actually, any value smaller than 1 is considered immediate)

Now every operation of the resource takes as long as it takes, even indefinitely if necessary.

Attributes of MessageBase resources

Chunk length

If you read data from a device, you must store it somewhere. Unfortunately, PyVISA must make space for the data
before it starts reading, which means that it must know how much data the device will send. However, it doesn’t know
a priori.

Therefore, PyVISA reads from the device in chunks. Each chunk is 20 kilobytes long by default. If there’s still data
to be read, PyVISA repeats the procedure and eventually concatenates the results and returns it to you. Those 20
kilobytes are large enough so that mostly one read cycle is sufficient.

The whole thing happens automatically, as you can see. Normally you needn’t worry about it. However, some devices
don’t like to send data in chunks. So if you have trouble with a certain device and expect data lengths larger than the
default chunk length, you should increase its value by saying e.g.

my_instrument.chunk_size = 102400

This example sets it to 100 kilobytes.

Termination characters

Somehow the computer must detect when the device is finished with sending a message. It does so by using different
methods, depending on the bus system. In most cases you don’t need to worry about termination characters because
the defaults are very good. However, if you have trouble, you may influence termination characters with PyVISA.

Termination characters may be one character or a sequence of characters. Whenever this character or sequence occurs
in the input stream, the read operation is terminated and the read message is given to the calling application. The
next read operation continues with the input stream immediately after the last termination sequence. In PyVISA, the
termination characters are stripped off the message before it is given to you.

1.1. User guide 13

PyVISA Documentation, Release 1.10.1

You may set termination characters for each instrument, e.g.

’my_instrument.read_termination = '"\r'

(‘r’ is carriage return, usually appearing in the manuals as CR)

Alternatively you can give it when creating your instrument object:

’my_instrument = rm.open_resource ("GPIB::10", read_termination='\r"')

The default value depends on the bus system. Generally, the sequence is empty, in particular for GPIB. For RS232 it’s
\r.

You can specify the character to add to each outgoing message using the write_termination attribute.

query_delay and send_end

There are two further options related to message termination, namely send_end and query_delay.

send_end is a boolean. If it’s True (the default), the EOI line is asserted after each write operation, signalling the
end of the operation. EOI is GPIB-specific but similar action is taken for other interfaces.

The argument query_delay is the time in seconds to wait after each write operation when performing a query. So
you could write:

my_instrument = rm.open_resource ("GPIB::10", send_end=False, delay=1.2)

This will set the delay to 1.2 seconds, and the EOI line is omitted. By the way, omitting EOI is not recommended, so
if you omit it nevertheless, you should know what you’re doing.

1.1.7 PyVISA Shell

The shell, moved into PyVISA from the Lantz Project is a text based user interface to interact with instruments. You
can invoke it from the command-line:

’python -m visa shell

or:

’pyvisafshell

that will show something the following prompt:

Welcome to the VISA shell. Type help or ? to list commands.

(visa)

At any time, you can type ? or help to get a list of valid commands:

(visa) help

Documented commands (type help <topic>):

EOF attr close exit help 1list open query read timeout write

(visa) help list
List all connected resources.

14 Chapter 1. General overview

https://lantz.readthedocs.org

PyVISA Documentation, Release 1.10.1

Tab completion is also supported.

The most basic task is listing all connected devices:

(visa) 1list

(0) ASRL1::INSTR

(1) ASRL2::INSTR

(2) USBO::0x1AB1::0x0588::DS1K00005888::INSTR

Each device/port is assigned a number that you can use for subsequent commands. Let’s open comport 1:

(visa) open 0

ASRL1::INSTR has been opened.

You can talk to the device using "write", "read" or "query.
The default end of message is added to each message

(open) gquery =IDN?

Some Instrument, Some Company.

You can print timeout that is set for query/read operation:

(open) timeout
Timeout: 2000ms

Then also to change the timeout for example to 1500ms (1.5 sec):

(open) timeout 1500
Done

We can also get a list of all visa attributes:

o ———————— o o ————————— e
e +
| VISA name | Constant | Python name | o
. val |
e o ——— o o
e +
| VI_ATTR_ASRL_ALLOW_TRANSMIT | 1073676734 | allow_transmit | .
. 1 |
| VI_ATTR_ASRL_AVAIL_NUM | 1073676460 | bytes_in_buffer | L
. 0 |
\ VI_ATTR_ASRL_BAUD | 1073676321 | baud_rate \ B
o 9600 |
| VI_ATTR_ASRL_BREAK_LEN | 1073676733 | break_length | .
. 250 |
| VI_ATTR_ASRL_BREAK_STATE | 1073676732 | break_state | L
o 0 |
\ VI_ATTR_ASRL_CONNECTED | 1073676731 | \ VI_
—ERROR_NSUP_ATTR |
\ VI_ATTR_ASRL_CTS_STATE | 1073676462 | \ B
. 0 |
| VI_ATTR_ASRL_DATA_BITS | 1073676322 | data_bits | L
o 8 |
\ VI_ATTR_ASRL_DCD_STATE | 1073676463 | \ B
. 0 |
| VI_ATTR_ASRL_DISCARD_NULL | 1073676464 | discard_null \ B
. 0 |
| VI_ATTR_ASRL_DSR_STATE | 1073676465 | | .
o 0 |

(continues on next page)

1.1. User guide 15

PyVISA Documentation, Release 1.10.1

(continued from previous page)

—dev/cu.Bluetooth-PDA-Sync)

—
\

—
\
\

VI_ATTR_ASRL_DTR_STATE

1

VI_ATTR_ASRL_END_IN

2

VI_ATTR_ASRL_END_ OUT

0

VI_ATTR_ASRL_FLOW_CNTRL

0

VI_ATTR_ASRL_PARITY

0

VI_ATTR_ASRI_REPLACE_CHAR

0

VI_ATTR_ASRL_RI_STATE

0

VI_ATTR_ASRL_RTS_STATE

1

VI_ATTR_ASRL_STOP_BITS

10

VI_ATTR_ASRL_WIRE_MODE

128

VI_ATTR_ASRL_XOFF_CHAR

19

VI_ATTR_ASRL_XON_CHAR

17

VI_ATTR _DMA_ALLOW_EN

0

VI_ATTR_FILE_APPEND_EN

0

VI_ATTR_INTF_INST NAME

VI_ATTR_INTF_NUM

1

VI_ATTR_INTF_TYPE

4

VI_ATTR_IO_PROT

1

VI_ATTR_MAX_QUEUE_LENGTH

50

VI_ATTR_RD_BUF_OPER_MODE

3

VI_ATTR_RD_BUF_SIZE

4096

VI_ATTR_RM_SESSION

3160976

VI_ATTR_RSRC_CLASS

INSTR

VI_ATTR_RSRC_IMPL_VERSION

5243392

VI_ATTR_RSRC_LOCK_STATE

0

VI_ATTR_RSRC_MANF_TID

4086

VI_ATTR_RSRC_MANF_NAME
—National Instruments
VI_ATTR_RSRC_NAME
—ASRL1::INSTR

VI_ATTR_RSRC_SPEC_VERSION

1073676466

1073676467

1073676468

1073676325

1073676323

1073676478

1073676479

1073676480

1073676324

1073676735

1073676482

1073676481

1073676318

1073676690

3221160169

1073676662

1073676657

1073676316

1073676293

1073676330

1073676331

1073676484

3221159937

1073676291

1073676292

1073676661

3221160308

3221159938

1073676656

| .

end_input \

parity \

replace_char |

stop_bits \

xoff_char |
xon_char |

allow_dma |

| ASRL1 (/

interface_number |

io_protocol |

resource_class |
implementation_version |

lock_state |

resource_manufacturer_name |
resource_name |

spec_version |

—

5243136

(continues on next page)

16

Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

(continued from previous page)

\ VI_ATTR_SEND_END_EN | 1073676310 | send_end \ B
o 1 \

\ VI_ATTR_SUPPRESS_END_EN | 1073676342 | \ B
. 0

\ VI_ATTR_TERMCHAR | 1073676312 | \ o
. 10

\ VI_ATTR_TERMCHAR_EN | 1073676344 | \ B
o 0 \

\ VI_ATTR_TMO_VALUE | 1073676314 | \ B
o 2000

\ VI_ATTR_TRIG_ID | 1073676663 | \ B
— - l ‘

\ VI_ATTR_WR_BUF_OPER_MODE | 1073676333 | \ B
o 2 \

\ VI_ATTR_WR_BUF_SIZE | 1073676334 | \ B
. 4096

- - - -
e +

To simplify the handling of VI_ATTR_TERMCHAR and VI_ATTR_TERMCHAR_EN, the command ‘termchar’ can
be used. If only one character provided, it sets both read and write termination character to the same character. If two
characters are provided, it sets read and write termination characters independently.

To setup termchar to ‘r’ (CR or ascii code 10):

(open) termchar CR
Done

To read what termchar is defined:

(open) termchar
Termchar read: CR write: CR

To setup read termchar to ‘n’ and write termchar to ‘rn’:

(open) termchar LF CRLF
Done

Supported termchar values are: CR (‘r’), LF (‘n’), CRLF (‘rn’) , NUL (‘0’), None. None is used to disable termchar.

Finally, you can close the device:

(open) close

PyVisa Shell Backends

Based on available backend (see bellow for info command), it is possible to switch shell to use non-default backend
via -b BACKEND or ——backend BACKEND.

You can invoke:

python -m visa -b sim shell

or:

1.1. User guide 17

PyVISA Documentation, Release 1.10.1

pyvisa-shell -b sim

to use python-sim as backend instead of ni backend. This can be used for example for testing of python-sim configu-
ration.

You can invoke:

’python -m visa -b py shell

or:

’pyvisafshell -b py

uses python-py as backend instead of ni backend, for situation when ni not installed.

PyVisa Info

You can invoke it from the command-line:

’python -m visa info

or:

’pyvisa—info

that will print information to diagnose PyVISA, info about Machine, Python, backends, etc

Machine Details:
Platform ID: Windows
Processor: Intel64 Family 6

PyVISA Version:
Backends:
ni:
Version: 1.8 (bundled with PyVISA)

py:
Version: 0.2

sim:
Version: 0.3
Spec version: 1.1

Summary

Cool, right? It will be great to have a GUI similar to NI-MAX, but we leave that to be developed outside PyVISA.
Want to help? Let us know!

1.1.8 VISA resource names

If you use the method open_resource (), you must tell this function the VISA resource name of the instrument
you want to connect to. Generally, it starts with the bus type, followed by a double colon ": : ", followed by the
number within the bus. For example,

18 Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

’GPIB::IO

denotes the GPIB instrument with the number 10. If you have two GPIB boards and the instrument is connected to
board number 1, you must write

’GPIBl::lO

As for the bus, things like "GPIB", "USB", "ASRL" (for serial/parallel interface) are possible. So for connecting to
an instrument at COM2, the resource name is

’ASRLZ

(Since only one instrument can be connected with one serial interface, there is no double colon parameter.) However,
most VISA systems allow aliases such as "COM2" or "LPT1". You may also add your own aliases.

The resource name is case-insensitive. It doesn’t matter whether you say "ASRL2" or "asr12". For further infor-
mation, I have to refer you to a comprehensive VISA description like http://www.ni.com/pdf/manuals/370423a.pdf.

VISA Resource Syntax and Examples

(This is adapted from the VISA manual)

The following table shows the grammar for the address string. Optional string segments are shown in square brackets

D-

Interface Syntax

ENET-Serial IN- | ASRL[O]::host address::serial port::INSTR

STR

GPIB INSTR GPIB[board]::primary address[::secondary address][::INSTR]

GPIB INTFC GPIB[board]::INTFC

PXI BACKPLANE | PXI[interface]::chassis number::BACKPLANE

PXIINSTR PXI[bus]::device[::function][::INSTR]

PXIINSTR PXI[interface]::bus-device[.function][::INSTR]

PXIINSTR PXI[interface]::CHASSISchassis number::SLOTslot number[::FUNCfunction][::INSTR]

PXI MEMACC PXI[interface]::MEMACC

Remote NI-VISA visa://host address[:server port]/remote resource

Serial INSTR ASRLboard[::INSTR]

TCPIP INSTR TCPIP[board]::host address[::LAN device name][::INSTR]

TCPIP SOCKET TCPIP[board]::host address::port:: SOCKET

USB INSTR USB[board]::manufacturer ID::model code::serial number[::USB interface num-
ber][::INSTR]

USB RAW USB|[board]::manufacturer ID::model code::serial number[::USB interface number]::RAW

VXI BACKPLANE | VXI[board][::VXI logical address]::BACKPLANE

VXI INSTR VXI[board]::VXI logical address[::INSTR]

VXI MEMACC VXI[board]::MEMACC

VXI SERVANT VXI[board]::SERVANT

Use the GPIB keyword to establish communication with GPIB resources. Use the VXI keyword for VXI resources via
embedded, MXIbus, or 1394 controllers. Use the ASRL keyword to establish communication with an asynchronous
serial (such as RS-232 or RS-485) device. Use the PXI keyword for PXI and PCI resources. Use the TCPIP keyword
for Ethernet communication.

The following table shows the default value for optional string segments.

1.1. User guide 19

http://www.ni.com/pdf/manuals/370423a.pdf

PyVISA Documentation, Release 1.10.1

Optional String Segments | Default Value

board 0

GPIB secondary address none

LAN device name inst0

PXI bus 0

PXI function 0

USB interface number lowest numbered relevant interface

The following table shows examples of address strings:

Address String | Description

ASRL::1.2.3.4::2::INAFRBrial device attached to port 2 of the ENET Serial controller at address 1.2.3.4.
ASRLI1::INSTR A serial device attached to interface ASRLI.

GPIB::1::0::INSTR A GPIB device at primary address 1 and secondary address 0 in GPIB interface 0.
GPIB2::.INTFC Interface or raw board resource for GPIB interface 2.

PXTI::15::INSTR PXI device number 15 on bus 0 with implied function 0.
PXI::2::BACKPLANBackplane resource for chassis 2 on the default PXI system, which is interface 0.
PXTI::CHASSIS 1::SIPKBdevice in slot number 3 of the PXI chassis configured as chassis 1.

PXI0::2- PXI bus number 2, device 12 with function 1.

12.1::INSTR
PXI0::MEMACC | PXI MEMACC session.

TCPIP::dev.companyAdrHNS d®ice using VXI-11 or LXT located at the specified address. This uses the default
LAN Device Name of inst0.

TCPIPO0::1.2.3.4::99RSOTKP/TP access to port 999 at the specified IP address.

USB::0x1234::1251: A2PISB Test & Measurement class device with manufacturer ID 0x1234, model code 125, and
5:INSTR serial number A22-5. This uses the device’s first available USBTMC interface. This is usually
number 0.

USB::0x5678::0x33: AINS9UIIBRAN]ass device with manufacturer ID 0x5678, model code 0x33, and serial num-
ber SN999. This uses the device’s interface number 1.

visa://hostname/ASRTHe: IdSTiRe ASRL1::INSTR on the specified remote system.
VXI::1::BACKPLANMainframe resource for chassis 1 on the default VXI system, which is interface 0.
VXI::MEMACC | Board-level register access to the VXI interface.

VXIO:: 1::INSTR | A VXI device at logical address 1 in VXI interface VXIO.

VXI0::SERVANT | Servant/device-side resource for VXI interface 0.

1.2 Advanced topics

This section of the documentation will cover the internal details of PyVISA. In particular, it will explain in details how
PyVISA manage backends.

1.2.1 Architecture

PyVISA implements convenient and Pythonic programming in three layers:
1. Low-level: A wrapper around the shared visa library.

The wrapper defines the argument types and response types of each function, as well as the conversions between
Python objects and foreign types.

You will normally not need to access these functions directly. If you do, it probably means that we need to
improve layer 2.

20 Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

All level 1 functions are static methods of VisalibraryBase.

Warning: Notice however that low-level functions might not be present in all backends. For broader
compatibility, do no use this layer. All the functionality should is available via the next layer.

2. Middle-level: A wrapping Python function for each function of the shared visa library.

These functions call the low-level functions, adding some code to deal with type conversions for functions that
return values by reference. These functions also have comprehensive and Python friendly documentation.

You only need to access this layer if you want to control certain specific aspects of the VISA library which are
not implemented by the corresponding resource class.

All level 2 functions are bound methods of VisalLibraryBase.
3. High-level: An object-oriented layer for ResourceManager and Resource.

The ResourceManager implements methods to inspect connected resources. You also use this object to
open other resources instantiating the appropriate Resource derived classes.

Resource and the derived classes implement functions and attributes access to the underlying resources in a
Pythonic way.

Most of the time you will only need to instantiate a ResourceManager. For a given resource, you will use
the open_resource () method to obtain the appropriate object. If needed, you will be able to access the
VisaLibrary object directly using the visalib attribute.

The VisaLibrary does the low-level calls. In the default NI Backend, levels 1 and 2 are implemented in the same
package called pyvisa.ctwrapper (which stands for ctypes wrapper). This package is included in PyVISA.

Other backends can be used just by passing the name of the backend to ResourceManager after the @ symbol.
See more information in A frontend for multiple backends.

Calling middle- and low-level functions

After you have instantiated the ResourceManager:

>>> import visa
>>> rm = visa.ResourceManager ()

you can access the corresponding VisaLibrary instance under the visalib attribute.

As an example, consider the VISA function viMapAddress. It appears in the low-level layer as the static method
viMapAddress of visalib attributed and also appears in the middle-level layer as map_address.

You can recognize low and middle-level functions by their names. Low-level functions carry the same name as in the
shared library, and they are prefixed by vi. Middle-level functions have a friendlier, more pythonic but still recognizable
name. Typically, camelCase names where stripped from the leading vi and changed to underscore separated lower case
names. The docs about these methods is located here API.

Low-level

You can access the low-level functions directly exposed as static methods, for example:

>>> rm.visalib.viMapAddress (<here goes the arguments>)

1.2. Advanced topics 21

PyVISA Documentation, Release 1.10.1

To call this functions you need to know the function declaration and how to interface it to python. To help you out, the
VisaLibrary object also contains middle-level functions.

It is very likely that you will need to access the VISA constants using these methods. You can find the information
about these constants here Constants module

Middle-level

The VisaLibrary object exposes the middle-level functions which are one-to-one mapped from the foreign library
as bound methods.

Each middle-level function wraps one low-level function. In this case:

>>> rm.visalib.map_address (<here goes the arguments>)

The calling convention and types are handled by the wrapper.

1.2.2 A frontend for multiple backends

A small historical note might help to make this section clearer. So bear with with me for a couple of lines. Originally
PyVISA was a Python wrapper to the VISA library. More specifically, it was ct ypes wrapper around the NI-VISA.
This approach worked fine but made it difficult to develop other ways to communicate with instruments in platforms
where NI-VISA was not available. Users had to change their programs to use other packages with different API.

Since 1.6, PyVISA is a frontend to VISA. It provides a nice, Pythonic API and can connect to multiple backends.
Each backend exposes a class derived from VisaLibraryBase that implements the low-level communication. The
ctypes wrapper around NI-VISA is the default backend (called ni) and is bundled with PyVISA for simplicity.

You can specify the backend to use when you instantiate the resource manager using the @ symbol. Remembering that
ni is the default, this:

>>> import visa
>>> rm = visa.ResourceManager ()

is the same as this:

>>> import visa
>>> rm = visa.ResourceManager ('lni')

You can still provide the path to the library if needed:

>>> import visa
>>> rm = visa.ResourceManager ('/path/to/lib@ni")

Under the hood, the ResourceManager looks for the requested backend and instantiate the VISA library that it
provides.

PyVISA locates backends by name. If you do:

>>> import visa
>>> rm = visa.ResourceManager ('l@somename’)

PyVISA will try to import a package/module named pyvisa—-somename which should be installed in your system.
This is a loosely coupled configuration free method. PyVISA does not need to know about any backend out there until
you actually try to use it.

You can list the installed backends by running the following code in the command line:

22 Chapter 1. General overview

https://docs.python.org/3/library/ctypes.html#module-ctypes

PyVISA Documentation, Release 1.10.1

python -m visa info

Developing a new Backend

What does a minimum backend looks like? Quite simple:

from pyvisa.highlevel import VisalLibraryBase

class MyLibrary (VisalibraryBase) :
pass

WRAPPER_CLASS = MyLibrary

Additionally you can provide a staticmethod named get_debug_info that should return a dictionary of debug informa-
tion which is printed when you call python -m visa infoorpyvisa-info

Note: Your backend name should not end by —script or it will be discarded. This is because any script generated
by setuptools containing the name pyvisa will be named pyvisa-*—script and they are obviously not backends.
Examples are the pyvisa—-shell and pyvisa—info scripts.

An important aspect of developing a backend is knowing which VisaLibraryBase method to implement and what API
to expose.

A complete implementation of a VISA Library requires a lot of functions (basically almost all level 2 functions as
described in Architecture (there is also a complete list at the bottom of this page). But a working implementation does
not require all of them.

As a very minimum set you need:
¢ open_default_resource_manager: returns a session to the Default Resource Manager resource.
» open: Opens a session to the specified resource.
¢ close: Closes the specified session, event, or find list.
* list_resources: Returns a tuple of all connected devices matching query.
(you can get the signature below or here Visa Library)
But of course you cannot do anything interesting with just this. In general you will also need:
» get_attribute: Retrieves the state of an attribute.
« set_atribute: Sets the state of an attribute.
If you need to start sending bytes to MessageBased instruments you will require:
* read: Reads data from device or interface synchronously.
* write: Writes data to device or interface synchronously.
For other usages or devices, you might need to implement other functions. Is really up to you and your needs.

These functions should raise a pyvisa.errors.VisalOError or emit a pyvisa.errors.
VisaIOWarning if necessary.

Complete list of level 2 functions to implement:

1.2. Advanced topics 23

PyVISA Documentation, Release 1.10.1

def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def
def

read_memory (self, session, space, offset, width, extended=False):
write_memory (self, session, space, offset, data, width, extended=False):
length, width, extended=False):
length, data, width, extended=False):

move_in(self, session, space, offset,
move_out (self, session, space, offset,
peek (self, session, address, width):

poke (self, session, address, width, data):

assert_interrupt_signal (self, session,

mode, status_id):

assert_trigger (self, session, protocol):
assert_utility_signal (self, session, line):

buffer_read(self, session, count):
buffer_write(self, session, data):
clear (self, session):
close (self, session):

disable_event (self, session, event_type, mechanism) :
discard_events (self, session, event_type, mechanism):
enable_event (self, session, event_type, mechanism, context=None) :

flush(self, session, mask):

get_attribute(self, session, attribute):

gpib_command(self, session, data):
gpib_control_atn(self, session, mode):
gpib_control_ren(self, session, mode) :

gpib_pass_control (self, session, primary_address,

gpib_send_ifc(self, session):

in_8(self, session, space, offset, extended=False):

in_16(self, session, space, offset, extended=False):
in_32 (self, session, space, offset, extended=False):
in_64(self, session, space, offset, extended=False):
install_handler(self, session, event_type, handler, user_handle):
list_resources(self, session, query='?x::INSTR"):

lock (self, session, lock_type, timeout,

map_address (self, session, map_space,

map_trigger (self, session, trigger_source,

memory_allocation(self, session, size,

map_base, map_size,

extended=False) :

memory_free(self, session, offset, extended=False):

move (self, session, source_space, source_offset,
move_asynchronously(self, session, source_space,

secondary_address) :

requested_key=None) :

trigger_destination, mode):

source_width, destination_space,
source_offset, source_width,

move_in_8(self, session, space, offset, length, extended=False):
move_in_16(self, session, space, offset, length, extended=False):
move_in_32(self, session, space, offset, length, extended=False):
move_in_64 (self, session, space, offset, length, extended=False):
move_out_8 (self, session, space, offset, length, data, extended=False):
move_out_16(self, session, space, offset, length, data, extended=False):
move_out_32 (self, session, space, offset, length, data, extended=False):
move_out_64 (self, session, space, offset, length, data, extended=False):

open (self, session, resource_name,
open_default_resource_manager (self) :

out_8(self, session, space, offset, data,

extended=False) :

out_16(self, session, space, offset, data, extended=False):
out_32(self, session, space, offset, data, extended=False):
out_64 (self, session, space, offset, data, extended=False):
parse_resource (self, session, resource_name) :

parse_resource_extended(self, session,
peek_8(self, session, address):
peek_16(self, session, address):
peek_32(self, session, address):
peek_64(self, session, address):
poke_8(self, session, address, data):

resource_name) :

(continues on next page)

24

Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

(continued from previous page)

def poke_16(self, session, address, data):

def poke_32(self, session, address, data):

def poke_64(self, session, address, data):

def read(self, session, count):

def read_asynchronously(self, session, count):

def read_stb(self, session):

def read_to_file(self, session, filename, count):

def set_attribute(self, session, attribute, attribute_state):

def set_buffer (self, session, mask, size):

def status_description(self, session, status):

def terminate(self, session, degree, job_id):

def uninstall_ handler(self, session, event_type, handler, user_handle=None) :
def unlock (self, session):

def unmap_address(self, session):

def unmap_trigger(self, session, trigger_source, trigger_destination):

def usb_control_in(self, session, request_type_bitmap_field, request_id, request_
—value,

def usb_control_out (self, session, request_type_bitmap_field, request_id, request_
—value,

def vxi_command_query (self, session, mode, command) :

def wait_on_event (self, session, in_event_type, timeout):

def write(self, session, data):

def write_asynchronously (self, session, data):

def write_from file(self, session, filename, count):

1.3 Frequently asked questions

This section covers frequently asked questions in relation with PyVISA. You will find first miscellaneous questions
and next a set of questions that requires more in depth answers.

1.3.1 Miscellaneous questions

Is PyVISA endorsed by National Instruments?

No. PyVISA is developed independently of National Instrument as a wrapper for the VISA library.

Who makes PyVISA?
PyVISA was originally programmed by Torsten Bronger and Gregor Thalhammer. It is based on earlier experiences
by Thalhammer.

It was maintained from March 2012 to August 2013 by Florian Bauer. It was maintained from August 2013 to
December 2017 by Hernan E. Grecco <hernan.grecco@ gmail.com>. It is currently maintained by Matthieu Dartiailh
<m.dartiailh@gmail.com>

Take a look at AUTHORS for more information

Is PyVISA thread-safe?

Yes, PyVISA is thread safe starting from version 1.6.

1.3. Frequently asked questions 25

mailto:hernan.grecco@gmail.com
mailto:m.dartiailh@gmail.com
https://github.com/pyvisa/pyvisa/blob/master/AUTHORS

PyVISA Documentation, Release 1.10.1

I have an error in my program and | am having trouble to fix it

PyVISA provides useful logs of all operations. Add the following commands to your program and run it again:

import visa
visa.log_to_screen()

| found a bug, how can | report it?

Please report it on the Issue Tracker, including operating system, python version and library version. In addition you
might add supporting information by pasting the output of this command:

python -m visa info

Error: Image not found

This error occurs when you have provided an invalid path for the VISA library. Check that the path provided to the
constructor or in the configuration file

Error: Could not found VISA library

This error occurs when you have not provided a path for the VISA library and PyVISA is not able to find it for you.
You can solve it by providing the library path to the VisaLibrary or ResourceManager constructor:

’>>> visalib = Visalibrary('/path/to/library")

or:

’>>> rm = ResourceManager ('Path to library')

or creating a configuration file as described in Configuring the backend.

Error: No matching architecture

This error occurs when you the Python architecture does not match the VISA architecture.

Note: PyVISA tries to parse the error from the underlying foreign function library to provide a more useful error
message. If it does not succeed, it shows the original one.

In Mac OS X the original error message looks like this:

OSError: dlopen(/Library/Frameworks/visa.framework/visa, 6): no suitable image found.
— Did find:

/Library/Frameworks/visa.framework/visa: no matching architecture in universal,
—wrapper

/Library/Frameworks/visa.framework/visa: no matching architecture in universal,
—wrapper

In Linux the original error message looks like this:

OSError: Could not open VISA library:

Error while accessing /usr/local/vxipnp/linux/bin/libvisa.so.7:/usr/local/vxipnp/
i 50 -+ wrong ELE class: ELECLASS32

1iny bin
ESESS

=+

(continues on next page)

26 Chapter 1. General overview

https://github.com/pyvisa/pyvisa/issues

PyVISA Documentation, Release 1.10.1

(continued from previous page)

|

First, determine the details of your installation with the help of the following debug command:

python -m visa info

You will see the ‘bitness’ of the Python interpreter and at the end you will see the list of VISA libraries that PyVISA

was able to find.
The solution is to:

1. Install and use a VISA library matching your Python ‘bitness’

Download and install it from National Instruments’s VISA. Run the debug command again to see if the new
library was found by PyVISA. If not, create a configuration file as described in Configuring the backend.

If there is no VISA library with the correct bitness available, try solution 2.

or

2. Install and use a Python matching your VISA library ‘bitness’

In Windows and Linux: Download and install Python with the matching bitness. Run your script again using

the new Python

In Mac OS X, Python is usually delivered as universal binary (32 and 64 bits).

You can run it in 32 bit by running:

’arch -1386 python myscript.py

or in 64 bits by running:

’arch -x86_64 python myscript.py

You can create an alias by adding the following line

alias python32="arch -i386 python”

into your .bashrc or .profile or ~/.bash_profile (or whatever file depending on which shell you are using.)

You can also create a virtual environment for this.

Where can | get more information about VISA?

* The original VISA docs:
— VISA specification (scroll down to the end)
— VISA library specification

— VISA specification for textual languages

* The very good VISA manuals from National Instruments’s VISA:

— NI-VISA User Manual
— NI-VISA Programmer Reference Manual
— NI-VISA help file in HTML

1.3. Frequently asked questions

27

http://www.virtualenv.org/en/latest/
http://www.ivifoundation.org/Downloads/Specifications.htm
http://www.ivifoundation.org/Downloads/Class%20Specifications/vpp43.doc
http://www.ivifoundation.org/Downloads/Class%20Specifications/vpp432.doc
http://ni.com/visa/
http://digital.ni.com/manuals.nsf/websearch/266526277DFF74F786256ADC0065C50C
http://digital.ni.com/manuals.nsf/websearch/87E52268CF9ACCEE86256D0F006E860D
http://digital.ni.com/manuals.nsf/websearch/21992F3750B967ED86256F47007B00B3

PyVISA Documentation, Release 1.10.1

1.3.2 NI-VISA Installation

In every OS, the NI-VISA library bitness (i.e. 32- or 64-bit) has to match the Python bitness. So first you need to install
a NI-VISA that works with your OS and then choose the Python version matching the installed NI-VISA bitness.

PyVISA includes a debugging command to help you troubleshoot this (and other things):

’python -m visa info

or equivalently:

’pyvisafinfo

According to National Instruments, NI VISA 17.5 is available for the following platforms.

Note: If NI-VISA is not available for your system, take a look at the Frequently asked questions.

Mac OS X

Download NI-VISA for Mac OS X
Supports:
* Mac OS X 10.7.x x86 and x86-64
* Mac OS X 10.8.x

64-bit VISA applications are supported for a limited set of instrumentation buses. The supported buses are ENET-
Serial, USB, and TCPIP. Logging VISA operations in NI I/O Trace from 64-bit VISA applications is not supported.

Windows

Download NI-VISA for Windows
Suports:
* Windows Server 2003 R2 (32-bit version only)
* Windows Server 2008 R2 (64-bit version only)
¢ Windows 8 x64 Edition (64-bit version)
¢ Windows 8 (32-bit version)
¢ Windows 7 x64 Edition (64-bit version)
¢ Windows 7 (32-bit version)
* Windows Vista x64 Edition (64-bit version)
¢ Windows Vista (32-bit version)
* Windows XP Service Pack 3

Support for Windows Server 2003 R2 may require disabling physical address extensions (PAE).

28 Chapter 1. General overview

http://www.ni.com/download/ni-visa-17.5/7224/en/
http://www.ni.com/download/ni-visa-17.5/7220/en/

PyVISA Documentation, Release 1.10.1

Linux

Download NI-VISA for Linux

Supports:
* openSUSE 12.2
* openSUSE 12.1
* Red Hat Enterprise Linux Desktop + Workstation 6
* Red Hat Enterprise Linux Desktop + Workstation 5
* Scientific Linux 6.x
* Scientific Linux 5.x

More details details can be found in the README of the installer.

Note: NI-VISA runs on other linux distros but the installation is more cumbersome. On Arch linux and related
distributions, the AUR package ni-visa (early development) is known to work for the USB and TCPIP interfaces.
Please note that you should restart after the installation for things to work properly.

1.3.3 Migrating from PyVISA < 1.5

Note: if you want PyVISA 1.4 compatibility use PyVISA 1.5 that provides Python 3 support, better visa library
detection heuristics, Windows, Linux and OS X support, and no singleton object. PyVISA 1.6+ introduces a few
compatibility breaks.

Some of these decisions were inspired by the visalib package as a part of Lantz

Short summary

PyVISA 1.5 has full compatibility with previous versions of PyVISA using the legacy module (changing some of the
underlying implementation). But you are encouraged to do a few things differently if you want to keep up with the
latest developments and be compatible with PyVISA > 1.5.

Indeed PyVISA 1.6 breaks compatibility to bring across a few good things.

If you are doing:

>>> import visa
>>> keithley = visa.instrument ("GPIB::12")
>>> print (keithley.ask ("«IDN?"))

change it to:

>>> import visa

>>> rm = visa.ResourceManager ()

>>> keithley = rm.open_resource ("GPIB::12")
>>> print (keithley.query ("+«IDN?"))

If you are doing:

1.3. Frequently asked questions 29

http://www.ni.com/download/ni-visa-17.0/6700/en/
http://download.ni.com/support/softlib//visa/NI-VISA/17.0/Linux/README.txt
https://aur.archlinux.org/packages/ni-visa/
https://lantz.readthedocs.org/

PyVISA Documentation, Release 1.10.1

’>>> print (visa.get_instruments_list ())

change it to:

’>>> print (rm.list_resources())

If you are doing:

>>> import pyvisa.vpp43 as vpp43
>>> vppd3.visa_library.load_library("/path/to/my/libvisa.so.7")

change it to:

>>> import visa
>>> rm = visa.ResourceManager ("/path/to/my/libvisa.so.7")
>>> lib = rm.visalib

If you are doing::

’>>> vpp43.lock (session)

change it to:

’>>> lib.lock (session)

or better:

’>>> resource.lock ()

If you are doing::

’>>> inst.term_chars = '\r'

change it to:

>>> inst.read_termination = '\r'
>>> inst.write_termination = '\r'

If you are doing::

’>>> print (1lib.status)

change it to:

’>>> print (1lib.last_status)

or even better, do it per resource:

>>> print (rm.last_status) # for the resource manager
>>> print (inst.last_status) # for a specific instrument

If you are doing::

>>> inst.timeout = 1 # Seconds

change it to:

30 Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

>>> inst.timeout = 1000 # Milliseconds

As you see, most of the code shown above is making a few things explict. It adds 1 line of code (instantiating the
ResourceManager object) which is not a big deal but it makes things cleaner.

If you were using printf, queryf, scanf, sprintf or sscanf of vpp43, rewrite as pure Python code (see
below).

If you were using Instrument .delay, change your code or use Instrument . query_delay (see below).
A few alias has been created to ease the transition:

e ask -> query

* ask_delay -> query_delay

e get_instrument -> open_resource

A more detailed description

Dropped support for string related functions

The VISA library includes functions to search and manipulate strings such as print f, queryf, scanf, sprintf
and sscanf. This makes sense as VISA involves a lot of string handling operations. The original PyVISA imple-
mentation wrapped these functions. But these operations are easily expressed in pure python and therefore were rarely
used.

PyVISA 1.5 keeps these functions for backwards compatibility but they are removed in 1.6.

We suggest that you replace such functions by a pure Python version.

Isolated low-level wrapping module

In the original PyVISA implementation, the low level implementation (vpp43) was mixed with higher level con-
structs. The VISA library was wrapped using ctypes.

In 1.5, we refactored it as ct wrapper. This allows us to test the foreign function calls by isolating them from higher
level abstractions. More importantly, it also allows us to build new low level modules that can be used as drop in
replacements for ctwrapper in high level modules.

In 1.6, we made the ResourceManager the object exposed to the user. The type of the VisaLibrary can selected
depending of the 1ibrary_path and obtained from a plugin package.

We have two of such packages planned:
* a Mock module that allows you to test a PyVISA program even if you do not have VISA installed.

* a CFFI based wrapper. CFFI is new python package that allows easier and more robust wrapping of foreign
libraries. It might be part of Python in the future.

PyVISA 1.5 keeps vpp4 3 in the legacy subpackage (reimplemented on top of ctwrapper) to help with the migra-
tion. This module is gone in 1.6.

All functions that were present in vpp4 3 are now present in ctwrapper but they take an additional first parameter:
the foreign library wrapper.

We suggest that you replace vpp4 3 by accessing the VisaLibrary object under the attribute visalib of the resource
manager which provides all foreign functions as bound methods (see below).

1.3. Frequently asked questions 31

PyVISA Documentation, Release 1.10.1

No singleton objects

The original PyVISA implementation relied on a singleton, global objects for the library wrapper (named
visa_library, an instance of the old pyvisa.vpp43.VisaLibrary) and the resource manager (named
resource_manager, and instance of the old pyvisa.visa.ResourceManager). These were instantiated
on import and the user could rebind to a different library using the 1oad_library method. Calling this method
however did not affect resource_manager and might lead to an inconsistent state.

There were additionally a few global structures such a st at us which stored the last status returned by the library and
the warning context to prevent unwanted warnings.

In 1.5, there is a new VisaLibrary class and a new ResourceManager class (they are both in pyvisa.
highlevel). The new classes are not singletons, at least not in the strict sense. Multiple instances of
Visalibrary and ResourceManager are possible, but only if they refer to different foreign libraries. In code,
this means:

>>> 1ibl = visa.Visalibrary("/path/to/my/libvisa.so.7")
>>> 1ib2 = visa.Visalibrary("/path/to/my/libvisa.so.7")
>>> 1ib3 = visa.Visalibrary ("/path/to/my/libvisa.so.8")
>>> 1ibl is 1ib2

True

>>> 1ibl is 1ib3

False

Most of the time, you will not need access to a VisaLibrary object but to a ResourceManager. You can do:

>>> 1lib = visa.Visalibrary ("/path/to/my/libvisa.so.7")
>>> rm = lib.resource_manager

or equivalently:

>>> rm = visa.ResourceManager ("/path/to/my/libvisa.so.7")

Note: If the path for the library is not given, the path is obtained from the user settings file (if exists) or guessed from
the OS.

In 1.6, the state returned by the library is stored per resource. Additionally, warnings can be silenced by resource as
well. You can access with the 1ast_status property.

All together, these changes makes PyVISA thread safe.

VisaLibrary methods as way to call Visa functions

In the original PyVISA implementation, the VisaLibrary class was just having a reference to the ctypes library
and a few functions.

In 1.5, we introduced anew VisaLibrary class (pyvisa.highlevel) which has every single low level function
defined in ctwrapper as bound methods. In code, this means that you can do:

>>> import visa

>>> rm = visa.ResourceManager ("/path/to/my/libvisa.so.7")
>>> 1lib = rm.visalib

>>> print (lib.read_stb(session))

32 Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

(But it is very likely that you do not have to do it as the resource should have the function you need)

It also has every single VISA foreign function in the underlying library as static method. In code, this means that you
can do:

>>> status = ctypes.c_ushort ()
>>> ret lib.viReadSTB(session, ctypes.byref (status))
>>> print (ret.value)

Ask vs. query

Historically, the method ask has been used in PyVISA to do a write followed by a read. But in many other
programs this operation is called query. Thereby we have decided to switch the name, keeping an alias to help with
the transition.

However, ask_for_values has not been aliased to query_values because the API is different.
ask_for_values still uses the old formatting API which is limited and broken. We suggest that you migrate
everything to query_values

Seconds to milliseconds

The timeout is now in milliseconds (not in seconds as it was before). The reason behind this change is to make it
coherent with all other VISA implementations out there. The C-API, LabVIEW, .NET: all use milliseconds. Using the
same units not only makes it easy to migrate to PyVISA but also allows to profit from all other VISA docs out there
without extra cognitive effort.

Removal of Instrument.delay and added Instrument.query_delay

In the original PyVISA implementation, Inst rument takes a delay argument that adds a pause after each write
operation (This also can be changed using the delay attribute).

In PyVISA 1.6, delay is removed. Delays after write operations must be added to the application code. Instead, a
new attribute and argument query_delay is available. This allows you to pause between write' and " read
operations inside query. Additionally, query takes an optional argument called query allowing you to change it
for each method call.

Deprecated term_chars and automatic removal of CR + LF

In the original PyVISA implementation, Instrument takes a term_chars argument to change at the read and
write termination characters. If this argument is None, CR + LF is appended to each outgoing message and not
expected for incoming messages (although removed if present).

In PyVISA 1.6, term_chars is replaced by read_termination’ and ' “write_termination. In this
way, you can set independently the termination for each operation. Automatic removal of CR + LF is also gone in
1.6.

1.3.4 Contributing to PyVISA

You can contribute in different ways:

1.3. Frequently asked questions 33

PyVISA Documentation, Release 1.10.1

Report issues

You can report any issues with the package, the documentation to the PyVISA issue tracker. Also feel free to submit
feature requests, comments or questions. In some cases, platform specific information is required. If you think this is
the case, run the following command and paste the output into the issue:

python -m visa info

It is useful that you also provide the log output. To obtain it, add the following lines to your code:

import visa
visa.log_to_screen()

If your issue concern a specific instrument please be sure to indicate the manufacturer and the model.

Contribute code

To contribute fixes, code or documentation to PyVISA, send us a patch, or fork PyVISA in github and submit the
changes using a pull request.

You can also get the code from PyPI or GitHub. You can either clone the public repository:

’$ git clone git://github.com/pyvisa/pyvisa.git

Download the tarball:

’$ curl -OL https://github.com/pyvisa/pyvisa/tarball/master

Or, download the zipball:

’$ curl -OL https://github.com/pyvisa/pyvisa/zipball/master

Once you have a copy of the source, you can embed it in your Python package, or install it into your site-packages
easily:

’$ python setup.py install

Note: If you have an old system installation of Python and you don’t want to mess with it, you can try Anaconda. It
is a free Python distribution by Continuum Analytics that includes many scientific packages.

Contributing to an existing backend
Backends are the central piece of PyVISA as they provide the low level communication over the different interfaces.

There a couple of backends in the wild which can use your help. Look them up in PyPI (try pyvisa in the search box)
and see where you can help.

Contributing a new backend

If you think there is a new way that low level communication can be achieved, go for it. You can use any of the existing
backends as a template or start a thread in the issue tracker and we will be happy to help you.

34 Chapter 1. General overview

https://github.com/pyvisa/pyvisa/issues
http://github.com/pyvisa/pyvisa
https://pypi.python.org/pypi/PyVISA
http://github.com/pyvisa/pyvisa
https://www.anaconda.com/distribution/
https://pypi.python.org/pypi/PyVISA
https://github.com/pyvisa/pyvisa/issues

PyVISA Documentation, Release 1.10.1

1.4 API

1.4.1 Visa Library

class pyvisa.highlevel.VisalLibraryBase
Base for VISA library classes.

A class derived from VisaLibraryBase library provides the low-level communication to the underlying devices
providing Pythonic wrappers to VISA functions. But not all derived class must/will implement all methods.

The default VisaLibrary classis pyvisa.ctwrapper.highlevel .NIVisaLibrary, which implements
a ctypes wrapper around the NI-VISA library.

In general, you should not instantiate it directly. The object exposed to the user is the pyvisa.highlevel.
ResourceManager. If needed, you can access the VISA library from it:

>>> import visa
>>> rm = visa.ResourceManager ("/path/to/my/libvisa.so.7")
>>> 1ib = rm.visalib

assert_interrupt_signal (session, mode, status_id)
Asserts the specified interrupt or signal.

Corresponds to viAssertIntrSignal function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* mode — How to assert the interrupt. (Constants. ASSERT*)

* status_id - This is the status value to be presented during an interrupt acknowledge
cycle.

Returns return value of the library call.
Return type pyvisa.constants.StatusCode

assert_trigger (session, protocol)
Asserts software or hardware trigger.

Corresponds to viAssertTrigger function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* protocol — Trigger protocol to use during assertion. (Constants. PROT*)
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

assert_utility_ signal (session, line)
Asserts or deasserts the specified utility bus signal.

Corresponds to viAssertUtilSignal function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* line - specifies the utility bus signal to assert. (Constants.VI_UTIL_ASSERT?*)

Returns return value of the library call.

1.4. API 35

PyVISA Documentation, Release 1.10.1

Return type pyvisa.constants.StatusCode

buffer_read (session, count)
Reads data from device or interface through the use of a formatted I/O read buffer.

Corresponds to viBufRead function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* count — Number of bytes to be read.
Returns data read, return value of the library call.
Return type bytes, pyvisa.constants.StatusCode

buffer_ write (session, data)
Writes data to a formatted I/O write buffer synchronously.

Corresponds to viBufWrite function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
¢ data (bytes)— data to be written.
Returns number of written bytes, return value of the library call.
Return type int, pyvisa.constants.StatusCode

clear (session)
Clears a device.

Corresponds to viClear function of the VISA library.
Parameters session — Unique logical identifier to a session.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

close (session)
Closes the specified session, event, or find list.

Corresponds to viClose function of the VISA library.
Parameters session — Unique logical identifier to a session, event, or find list.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

disable_event (session, event_type, mechanism)
Disables notification of the specified event type(s) via the specified mechanism(s).

Corresponds to viDisableEvent function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* event_type — Logical event identifier.

* mechanism — Specifies event handling mechanisms to be disabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

Returns return value of the library call.

36 Chapter 1. General overview

https://docs.python.org/3/library/stdtypes.html#bytes

PyVISA Documentation, Release 1.10.1

Return type pyvisa.constants.StatusCode

discard_events (session, event_type, mechanism)
Discards event occurrences for specified event types and mechanisms in a session.

Corresponds to viDiscardEvents function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be discarded.
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

Returns return value of the library call.
Return type pyvisa.constants.StatusCode

enable_event (session, event_type, mechanism, context=None)
Enable event occurrences for specified event types and mechanisms in a session.

Corresponds to viEnableEvent function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be enabled.
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR)

* context -
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

flush (session, mask)

(Con-

(Con-

Manually flushes the specified buffers associated with formatted I/O operations and/or serial communica-

tion.

Corresponds to viFlush function of the VISA library.

Parameters
* session — Unique logical identifier to a session.

* mask — Specifies the action to be taken with flushing the buffer. The following values
(defined in the constants module can be combined using the | operator. However multiple
operations on a single buffer cannot be combined. - VI_READ_BUF: Discard the read
buffer contents and if data was

present in the read buffer and no END-indicator was present, read from the device
until encountering an END indicator (which causes the loss of data).

— VI_READ_BUF_DISCARD: Discard the read buffer contents (does not perform any
1/0 to the device).

— VI_WRITE_BUF: Flush the write buffer by writing all buffered data to the device.

— VI_WRITE_BUF_DISCARD: Discard the write buffer contents (does not perform any
1/0 to the device).

1.4. API

37

PyVISA Documentation, Release 1.10.1

VI_IO_IN_BUF: Discards the receive buffer contents (same as
VI_IO_IN_BUF_DISCARD).

VI_IO_IN_BUF_DISCARD: Discard the receive buffer contents (does not perform any
1/0 to the device).

VI_IO_OUT_BUF: Flush the transmit buffer by writing all buffered data to the device.

VI_IO_OUT_BUF_DISCARD: Discard the transmit buffer contents (does not perform
any I/O to the device).

Returns return value of the library call.
Return type pyvisa.constants.StatusCode

get_attribute (session, attribute)
Retrieves the state of an attribute.

Corresponds to viGetAttribute function of the VISA library.
Parameters
* session — Unique logical identifier to a session, event, or find list.
* attribute — Resource attribute for which the state query is made (see Attributes.*)

Returns The state of the queried attribute for a specified resource, return value of the library
call.

Return type unicode (Py2) or str (Py3), list or other type, pyvisa.constants.
StatusCode

static get_debug_info ()
Override this method to return an iterable of lines with the backend debug details.

get_last_status_in_session (session)
Last status in session.

Helper function to be called by resources properties.

static get_library paths/()
Override this method to return an iterable of possible library_paths to try in case that no argument is given.

gpib_command (session, data)
Write GPIB command bytes on the bus.

Corresponds to viGpibCommand function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
e data (bytes) — data tor write.
Returns Number of written bytes, return value of the library call.
Return type int, pyvisa.constants.StatusCode

gpib_control_atn (session, mode)
Specifies the state of the ATN line and the local active controller state.

Corresponds to viGpibControl ATN function of the VISA library.
Parameters

* session - Unique logical identifier to a session.

38 Chapter 1. General overview

https://docs.python.org/3/library/stdtypes.html#bytes

PyVISA Documentation, Release 1.10.1

* mode — Specifies the state of the ATN line and optionally the local active controller state.
(Constants.VI_GPIB_ATN*)

Returns return value of the library call.
Return type pyvisa.constants.StatusCode

gpib_control_ren (session, mode)
Controls the state of the GPIB Remote Enable (REN) interface line, and optionally the remote/local state
of the device.

Corresponds to viGpibControlREN function of the VISA library.
Parameters
* session — Unique logical identifier to a session.

* mode — Specifies the state of the REN line and optionally the device remote/local state.
(Constants.VI_GPIB_REN¥*)

Returns return value of the library call.
Return type pyvisa.constants.StatusCode

gpib_pass_control (session, primary_address, secondary_address)
Tell the GPIB device at the specified address to become controller in charge (CIC).

Corresponds to viGpibPassControl function of the VISA library.
Parameters
* session - Unique logical identifier to a session.

e primary_address — Primary address of the GPIB device to which you want to pass
control.

* secondary_address — Secondary address of the targeted GPIB device. If the tar-
geted device does not have a secondary address, this parameter should contain the value
Constants.VI._ NO_SEC_ADDR.

Returns return value of the library call.
Return type pyvisa.constants.StatusCode

gpib_send_ifc (session)
Pulse the interface clear line (IFC) for at least 100 microseconds.

Corresponds to viGpibSendIFC function of the VISA library.
Parameters session — Unique logical identifier to a session.
Returns return value of the library call.

Return type pyvisa.constants.StatusCode

handlers = None
Contains all installed event handlers. Its elements are tuples with three elements: The handler itself (a
Python callable), the user handle (as a ct object) and the handler again, this time as a ct object created with
CFUNCTYPE.

ignore_warning (session, *warnings_constants)
A session dependent context for ignoring warnings

Parameters

* session - Unique logical identifier to a session.

1.4.

API 39

PyVISA Documentation, Release 1.10.1

* warnings_constants — constants identifying the warnings to ignore.

in_16 (session, space, offset, extended=False)
Reads in an 16-bit value from the specified memory space and offset.

Corresponds to viln16* function of the VISA library.

Parameters
* session — Unique logical identifier to a session.
* space — Specifies the address space. (Constants. *SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* extended — Use 64 bits offset independent of the platform.

Returns Data read from memory, return value of the library call.

Return type int, pyvisa.constants.StatusCode

in_32 (session, space, offset, extended=False)
Reads in an 32-bit value from the specified memory space and offset.

Corresponds to viln32* function of the VISA library.

Parameters
* session — Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* extended — Use 64 bits offset independent of the platform.

Returns Data read from memory, return value of the library call.

Return type int, pyvisa.constants.StatusCode

in_ 64 (session, space, offset, extended=False)
Reads in an 64-bit value from the specified memory space and offset.

Corresponds to viln64* function of the VISA library.

Parameters
* session - Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* extended - Use 64 bits offset independent of the platform.

Returns Data read from memory, return value of the library call.

Return type int, pyvisa.constants.StatusCode

in_8 (session, space, offset, extended=False)
Reads in an 8-bit value from the specified memory space and offset.

Corresponds to viln8* function of the VISA library.
Parameters
* session — Unique logical identifier to a session.

* space — Specifies the address space. (Constants.*SPACE*)

40 Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

* offset — Offset (in bytes) of the address or register from which to read.
* extended — Use 64 bits offset independent of the platform.

Returns Data read from memory, return value of the library call.

Return type int, pyvisa.constants.StatusCode

install_handler (session, event_type, handler, user_handle)
Installs handlers for event callbacks.

Corresponds to vilnstallHandler function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle — A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns a handler descriptor which consists of three elements: - handler (a python callable) -
user handle (a ctypes object) - ctypes handler (ctypes object wrapping handler) and return
value of the library call.

Return type int, pyvisa.constants.StatusCode

install_visa_handler (session, event_type, handler, user_handle=None)
Installs handlers for event callbacks.

Parameters
* session — Unique logical identifier to a session.
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle — A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

issue_warning on = None
Set error codes on which to issue a warning. set

last_status
Last return value of the library.

list_resources (session, query="2*:'INSTR’)
Returns a tuple of all connected devices matching query.

Parameters query — regular expression used to match devices.

lock (session, lock_type, timeout, requested_key=None)
Establishes an access mode to the specified resources.

Corresponds to viLock function of the VISA library.
Parameters

* session - Unique logical identifier to a session.

1.4.

API

41

PyVISA Documentation, Release 1.10.1

* lock_type - Specifies the type of lock requested, either Con-
stants. EXCLUSIVE_LOCK or Constants. SHARED LLOCK.

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error.

* requested_key — This parameter is not used and should be set to VI_NULL when
lockType is VI_EXCLUSIVE_LOCK.

Returns access_key that can then be passed to other sessions to share the lock, return value of
the library call.

Return type str, pyvisa.constants.StatusCode

map_address (session, map_space, map_base, map_size, access=False, suggested=None)
Maps the specified memory space into the process’s address space.

Corresponds to viMapAddress function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* map_space — Specifies the address space to map. (Constants.*SPACE*)
* map_base — Offset (in bytes) of the memory to be mapped.
* map_size — Amount of memory to map (in bytes).
* access -

* suggested - If not Constants.VI_NULL (0), the operating system attempts to map the
memory to the address specified in suggested. There is no guarantee, however, that the
memory will be mapped to that address. This operation may map the memory into an
address region different from suggested.

Returns address in your process space where the memory was mapped, return value of the
library call.

Return type address, pyvisa.constants.StatusCode

map_trigger (session, trigger_source, trigger_destination, mode)
Map the specified trigger source line to the specified destination line.

Corresponds to viMapTrigger function of the VISA library.

Parameters
* session — Unique logical identifier to a session.
* trigger_source — Source line from which to map. (Constants.VI_TRIG*)
* trigger_destination — Destination line to which to map. (Constants.VI_TRIG*)
* mode —

Returns return value of the library call.

Return type pyvisa.constants.StatusCode

memory_allocation (session, size, extended=False)
Allocates memory from a resource’s memory region.

Corresponds to viMemAlloc* functions of the VISA library.
Parameters

* session - Unique logical identifier to a session.

42 Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

* size — Specifies the size of the allocation.

* extended — Use 64 bits offset independent of the platform.
Returns offset of the allocated memory, return value of the library call.
Return type offset, pyvisa.constants.StatusCode

memory_free (session, offset, extended=False)
Frees memory previously allocated using the memory_allocation() operation.

Corresponds to viMemFree* function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
» offset — Offset of the memory to free.
* extended - Use 64 bits offset independent of the platform.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

move (session, source_space, source_offset, source_width, destination_space, destination_offset, destina-

tion_width, length)
Moves a block of data.

Corresponds to viMove function of the VISA library.
Parameters

* session - Unique logical identifier to a session.
* source_space — Specifies the address space of the source.
* source_offset — Offset of the starting address or register from which to read.
* source_width — Specifies the data width of the source.
* destination_space — Specifies the address space of the destination.
* destination_offset — Offset of the starting address or register to which to write.
* destination_width — Specifies the data width of the destination.

¢ length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

Returns return value of the library call.
Return type pyvisa.constants.StatusCode

move_asynchronously (session, source_space, source_offset, source_width, destination_space, des-
tination_offset, destination_width, length)
Moves a block of data asynchronously.

Corresponds to viMoveAsync function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* source_space — Specifies the address space of the source.
* source_offset — Offset of the starting address or register from which to read.

* source_width — Specifies the data width of the source.

1.4.

API

43

PyVISA Documentation, Release 1.10.1

* destination_space — Specifies the address space of the destination.
* destination_offset — Offset of the starting address or register to which to write.
* destination_width — Specifies the data width of the destination.

¢ length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

Returns Job identifier of this asynchronous move operation, return value of the library call.
Return type jobid, pyvisa.constants.StatusCode

move_ in (session, space, offset, length, width, extended=False)
Moves a block of data to local memory from the specified address space and offset.

Corresponds to viMoveln* functions of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
» offset — Offset (in bytes) of the address or register from which to read.

¢ length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* width — Number of bits to read per element.

* extended - Use 64 bits offset independent of the platform.
Returns Data read from the bus, return value of the library call.
Return type list, pyvisa.constants.StatusCode

move_in_16 (session, space, offset, length, extended=False)
Moves an 16-bit block of data from the specified address space and offset to local memory.

Corresponds to viMoveln16* functions of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

* length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* extended - Use 64 bits offset independent of the platform.
Returns Data read from the bus, return value of the library call.
Return type list, pyvisa.constants.StatusCode

move_in_ 32 (session, space, offset, length, extended=False)
Moves an 32-bit block of data from the specified address space and offset to local memory.

Corresponds to viMoveln32* functions of the VISA library.
Parameters
* session - Unique logical identifier to a session.

* space — Specifies the address space. (Constants.*SPACE*)

44 Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

* offset — Offset (in bytes) of the address or register from which to read.

* length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* extended — Use 64 bits offset independent of the platform.
Returns Data read from the bus, return value of the library call.
Return type list, pyvisa.constants.StatusCode

move_in_ 64 (session, space, offset, length, extended=False)
Moves an 64-bit block of data from the specified address space and offset to local memory.

Corresponds to viMoveln64* functions of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

* length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* extended — Use 64 bits offset independent of the platform.
Returns Data read from the bus, return value of the library call.
Return type list, pyvisa.constants.StatusCode

move_in_ 8 (session, space, offset, length, extended=False)
Moves an 8-bit block of data from the specified address space and offset to local memory.

Corresponds to viMoveln8* functions of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
» offset — Offset (in bytes) of the address or register from which to read.

* length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* extended — Use 64 bits offset independent of the platform.
Returns Data read from the bus, return value of the library call.
Return type list, pyvisa.constants.StatusCode

move_out (session, space, offset, length, data, width, extended=False)
Moves a block of data from local memory to the specified address space and offset.

Corresponds to viMoveOut* functions of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)

* offset — Offset (in bytes) of the address or register from which to read.

1.4. API 45

PyVISA Documentation, Release 1.10.1

¢ length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* data — Data to write to bus.

* width — Number of bits to read per element.

* extended — Use 64 bits offset independent of the platform.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

move_out_16 (session, space, offset, length, data, extended=False)
Moves an 16-bit block of data from local memory to the specified address space and offset.

Corresponds to viMoveOut16* functions of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
» offset — Offset (in bytes) of the address or register from which to read.

¢ length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* data — Data to write to bus.

* extended - Use 64 bits offset independent of the platform.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

move_out_32 (session, space, offset, length, data, extended=False)
Moves an 32-bit block of data from local memory to the specified address space and offset.

Corresponds to viMoveOut32* functions of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

* length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* data — Data to write to bus.

* extended — Use 64 bits offset independent of the platform.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

move_out_ 64 (session, space, offset, length, data, extended=False)
Moves an 64-bit block of data from local memory to the specified address space and offset.

Corresponds to viMoveOut64* functions of the VISA library.
Parameters

* session - Unique logical identifier to a session.

46 Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

* length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* data — Data to write to bus.

* extended — Use 64 bits offset independent of the platform.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

move_out_8 (session, space, offset, length, data, extended=False)
Moves an 8-bit block of data from local memory to the specified address space and offset.

Corresponds to viMoveOut8* functions of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

* length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* data — Data to write to bus.
* extended — Use 64 bits offset independent of the platform.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode
Corresponds to viMoveOut8 function of the VISA library.

open (session, resource_name, access_mode=<AccessModes.no_lock: 0>, open_timeout=0)
Opens a session to the specified resource.

Corresponds to viOpen function of the VISA library.
Parameters

* session — Resource Manager session (should always be a session returned from
open_default_resource_manager()).

* resource_name — Unique symbolic name of a resource.

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (int) — If the access_mode parameter requests a lock, then this
parameter specifies the absolute time period (in milliseconds) that the resource waits to
get unlocked before this operation returns an error.

Returns Unique logical identifier reference to a session, return value of the library call.
Return type session, pyvisa.constants.StatusCode

open_default_resource_manager ()
This function returns a session to the Default Resource Manager resource.

Corresponds to viOpenDefaultRM function of the VISA library.

1.4.

API 47

https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

Returns Unique logical identifier to a Default Resource Manager session, return value of the
library call.

Return type session, pyvisa.constants.StatusCode

out_ 16 (session, space, offset, data, extended=False)
Write in an 16-bit value from the specified memory space and offset.

Corresponds to viOut16* functions of the VISA library.

Parameters
* session - Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* data — Data to write to bus.
* extended — Use 64 bits offset independent of the platform.

Returns return value of the library call.

Return type pyvisa.constants.StatusCode

out_ 32 (session, space, offset, data, extended=False)
Write in an 32-bit value from the specified memory space and offset.

Corresponds to viOut32* functions of the VISA library.

Parameters
* session - Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* data — Data to write to bus.
* extended — Use 64 bits offset independent of the platform.

Returns return value of the library call.

Return type pyvisa.constants.StatusCode

out_ 64 (session, space, offset, data, extended=False)
Write in an 64-bit value from the specified memory space and offset.

Corresponds to viOut64* functions of the VISA library.

Parameters
* session - Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* data — Data to write to bus.
* extended — Use 64 bits offset independent of the platform.

Returns return value of the library call.

Return type pyvisa.constants.StatusCode

48 Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

out_ 8 (session, space, offset, data, extended="False)
Write in an 8-bit value from the specified memory space and offset.

Corresponds to viOut8* functions of the VISA library.

Parameters
* session — Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* data — Data to write to bus.
* extended — Use 64 bits offset independent of the platform.

Returns return value of the library call.

Return type pyvisa.constants.StatusCode

parse_resource (session, resource_name)
Parse a resource string to get the interface information.

Corresponds to viParseRsrc function of the VISA library.
Parameters

* session — Resource Manager session (should always be the Default Resource Manager
for VISA returned from open_default_resource_manager()).

* resource_name — Unique symbolic name of a resource.

Returns Resource information with interface type and board number, return value of the library
call.

Return type pyvisa.highlevel.ResourcelInfo, pyvisa.constants.
StatusCode

parse_resource_extended (session, resource_name)
Parse a resource string to get extended interface information.

Corresponds to viParseRsrcEx function of the VISA library.
Parameters

* session — Resource Manager session (should always be the Default Resource Manager
for VISA returned from open_default_resource_manager()).

* resource_name — Unique symbolic name of a resource.
Returns Resource information, return value of the library call.

Return type pyvisa.highlevel.Resourcelnfo, pyvisa.constants.
StatusCode

peek (session, address, width)
Read an 8, 16, 32, or 64-bit value from the specified address.

Corresponds to viPeek* functions of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* address — Source address to read the value.

e width — Number of bits to read.

1.4.

API 49

PyVISA Documentation, Release 1.10.1

Returns Data read from bus, return value of the library call.
Return type bytes, pyvisa.constants.StatusCode

peek_16 (session, address)
Read an 16-bit value from the specified address.

Corresponds to viPeek16 function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* address — Source address to read the value.
Returns Data read from bus, return value of the library call.
Return type bytes, pyvisa.constants.StatusCode

peek_ 32 (session, address)
Read an 32-bit value from the specified address.

Corresponds to viPeek32 function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* address — Source address to read the value.
Returns Data read from bus, return value of the library call.
Return type bytes, pyvisa.constants.StatusCode

peek_ 64 (session, address)
Read an 64-bit value from the specified address.

Corresponds to viPeek64 function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* address — Source address to read the value.
Returns Data read from bus, return value of the library call.
Return type bytes, pyvisa.constants.StatusCode

peek_8 (session, address)
Read an 8-bit value from the specified address.

Corresponds to viPeek8 function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* address — Source address to read the value.
Returns Data read from bus, return value of the library call.
Return type bytes, pyvisa.constants.StatusCode

poke (session, address, width, data)
Writes an 8, 16, 32, or 64-bit value from the specified address.

Corresponds to viPoke* functions of the VISA library.

Parameters

50 Chapter 1

. General overview

PyVISA Documentation, Release 1.10.1

* session — Unique logical identifier to a session.

* address — Source address to read the value.
* width — Number of bits to read.
* data — Data to be written to the bus.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

poke_16 (session, address, data)
Write an 16-bit value from the specified address.

Corresponds to viPoke16 function of the VISA library.

Parameters

* session - Unique logical identifier to a session.

* address — Source address to read the value.
e data — value to be written to the bus.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

poke_32 (session, address, data)
Write an 32-bit value from the specified address.

Corresponds to viPoke32 function of the VISA library.

Parameters

* session — Unique logical identifier to a session.

* address — Source address to read the value.
¢ data — value to be written to the bus.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

poke_ 64 (session, address, data)
Write an 64-bit value from the specified address.

Corresponds to viPoke64 function of the VISA library.

Parameters

* session - Unique logical identifier to a session.

¢ address — Source address to read the value.
* data — value to be written to the bus.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

poke_ 8 (session, address, data)
Write an 8-bit value from the specified address.

Corresponds to viPoke8 function of the VISA library.

Parameters

1.4.

API

51

PyVISA Documentation, Release 1.10.1

* session — Unique logical identifier to a session.
* address — Source address to read the value.
* data - value to be written to the bus.

Returns Data read from bus.

Returns return value of the library call.

Return type pyvisa.constants.StatusCode

read (session, count)
Reads data from device or interface synchronously.

Corresponds to viRead function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* count — Number of bytes to be read.
Returns data read, return value of the library call.
Return type bytes, pyvisa.constants.StatusCode

read_asynchronously (session, count)
Reads data from device or interface asynchronously.

Corresponds to viReadAsync function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
e count — Number of bytes to be read.
Returns result, jobid, return value of the library call.
Return type ctypes buffer, jobid, pyvisa.constants.StatusCode

read_memory (session, space, offset, width, extended=False)
Reads in an 8-bit, 16-bit, 32-bit, or 64-bit value from the specified memory space and offset.

Corresponds to viln* functions of the VISA library.

Parameters
* session — Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
e width — Number of bits to read.
* extended — Use 64 bits offset independent of the platform.

Returns Data read from memory, return value of the library call.

Return type int, pyvisa.constants.StatusCode

read_stb (session)
Reads a status byte of the service request.

Corresponds to viReadSTB function of the VISA library.

Parameters session — Unique logical identifier to a session.

52 Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

Returns Service request status byte, return value of the library call.
Return type int, pyvisa.constants.StatusCode

read_to_file (session, filename, count)
Read data synchronously, and store the transferred data in a file.

Corresponds to viReadToFile function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* filename — Name of file to which data will be written.
e count — Number of bytes to be read.
Returns Number of bytes actually transferred, return value of the library call.
Return type int, pyvisa.constants.StatusCode

resource_manager = None
Default ResourceManager instance for this library.

set_attribute (session, attribute, attribute_state)
Sets the state of an attribute.

Corresponds to viSetAttribute function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
e attribute - Attribute for which the state is to be modified. (Attributes.*)
* attribute_state — The state of the attribute to be set for the specified object.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

set_buffer (session, mask, size)
Sets the size for the formatted I/O and/or low-level I/O communication buffer(s).

Corresponds to viSetBuf function of the VISA library.
Parameters
* session - Unique logical identifier to a session.

* mask — Specifies the type of buffer. (Constants.VI_READ_BUF, .VI_WRITE_BUF,
.VI_IO_IN_BUF, .VI_IO_OUT_BUF)

* size — The size to be set for the specified buffer(s).
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

status_description (session, status)
Returns a user-readable description of the status code passed to the operation.

Corresponds to viStatusDesc function of the VISA library.
Parameters
* session - Unique logical identifier to a session.

* status — Status code to interpret.

. API 53

PyVISA Documentation, Release 1.10.1

Returns
» The user-readable string interpretation of the status code passed to the operation,
* return value of the library call.
Return type
* unicode (Py2) or str (Py3)
* pyvisa.constants.StatusCode

terminate (session, degree, job_id)
Requests a VISA session to terminate normal execution of an operation.

Corresponds to viTerminate function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* degree — Constants. NULL
* job_id — Specifies an operation identifier.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

uninstall all visa_handlers (session)
Uninstalls all previously installed handlers for a particular session.

Parameters session - Unique logical identifier to a session. If None, operates on all sessions.

uninstall_handler (session, event_type, handler, user_handle=None)
Uninstalls handlers for events.

Corresponds to viUninstallHandler function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely in a session for an event.

Returns return value of the library call.
Return type pyvisa.constants.StatusCode

uninstall_visa_handler (session, event_type, handler, user_handle=None)
Uninstalls handlers for events.

Parameters
* session - Unique logical identifier to a session.
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - The user handle (ctypes object or None) returned by in-
stall_visa_handler.

54 Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

unlock (session)
Relinquishes a lock for the specified resource.

Corresponds to viUnlock function of the VISA library.
Parameters session — Unique logical identifier to a session.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

unmap_address (session)
Unmaps memory space previously mapped by map_address().

Corresponds to viUnmapAddress function of the VISA library.
Parameters session — Unique logical identifier to a session.
Returns return value of the library call.

Return type pyvisa.constants.StatusCode

unmap_trigger (session, trigger_source, trigger_destination)
Undo a previous map from the specified trigger source line to the specified destination line.

Corresponds to viUnmapTrigger function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* trigger_source — Source line used in previous map. (Constants.VI_TRIG*)

* trigger_destination - Destination line used in previous map. (Con-
stants.VI_TRIG%*)

Returns return value of the library call.
Return type pyvisa.constants.StatusCode

usb_control_in (session, request_type_bitmap_field, request_id, request_value, index, length=0)
Performs a USB control pipe transfer from the device.

Corresponds to viUsbControlln function of the VISA library.
Parameters
* session - Unique logical identifier to a session.

* request_type_ bitmap_field - bmRequestType parameter of the setup stage of a
USB control transfer.

* request_id - bRequest parameter of the setup stage of a USB control transfer.
* request_value — wValue parameter of the setup stage of a USB control transfer.

* index — windex parameter of the setup stage of a USB control transfer. This is usually
the index of the interface or endpoint.

* length — wlLength parameter of the setup stage of a USB control transfer. This value
also specifies the size of the data buffer to receive the data from the optional data stage of
the control transfer.

Returns
» The data buffer that receives the data from the optional data stage of the control transfer

* return value of the library call.

. API 55

PyVISA Documentation, Release 1.10.1

Return type
* bytes
* pyvisa.constants.StatusCode

usb_control_out (session, request_type_bitmap_field, request_id, request_value, index, data="")
Performs a USB control pipe transfer to the device.

Corresponds to viUsbControlOut function of the VISA library.
Parameters
* session — Unique logical identifier to a session.

* request_type_bitmap_field - bmRequestType parameter of the setup stage of a
USB control transfer.

* request_id - bRequest parameter of the setup stage of a USB control transfer.
* request_value — wValue parameter of the setup stage of a USB control transfer.

* index — windex parameter of the setup stage of a USB control transfer. This is usually
the index of the interface or endpoint.

* data - The data buffer that sends the data in the optional data stage of the control transfer.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

vxi_command_query (session, mode, command)
Sends the device a miscellaneous command or query and/or retrieves the response to a previous query.

Corresponds to viVxiCommandQuery function of the VISA library.
Parameters
* session - Unique logical identifier to a session.

* mode — Specifies whether to issue a command and/or retrieve a response. (Con-
stants.VI_VXI_CMD*, .VI_VXI_RESP¥)

* command — The miscellaneous command to send.
Returns The response retrieved from the device, return value of the library call.
Return type int, pyvisa.constants.StatusCode

wait_on_event (session, in_event_type, timeout)
Waits for an occurrence of the specified event for a given session.

Corresponds to viWaitOnEvent function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* in_event_type - Logical identifier of the event(s) to wait for.

* timeout — Absolute time period in time units that the resource shall wait for a specified
event to occur before returning the time elapsed error. The time unit is in milliseconds.

Returns
* Logical identifier of the event actually received

* A handle specifying the unique occurrence of an event

56 Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

* return value of the library call.
Return type
¢ eventtype
¢ cvent
* pyvisa.constants.StatusCode

write (session, data)
Writes data to device or interface synchronously.

Corresponds to viWrite function of the VISA library.
Parameters
* session — Unique logical identifier to a session.
¢ data (str) - data to be written.
Returns Number of bytes actually transferred, return value of the library call.
Return type int, pyvisa.constants.StatusCode

write_asynchronously (session, data)
Writes data to device or interface asynchronously.

Corresponds to viWriteAsync function of the VISA library.
Parameters
* session - Unique logical identifier to a session.

¢ data — data to be written.

Returns Job ID of this asynchronous write operation, return value of the library call.

Return type jobid, pyvisa.constants.StatusCode

write_from_file (session, filename, count)
Take data from a file and write it out synchronously.

Corresponds to viWriteFromFile function of the VISA library.
Parameters
* session - Unique logical identifier to a session.
* filename — Name of file from which data will be read.
e count — Number of bytes to be written.
Returns Number of bytes actually transferred, return value of the library call.
Return type int, pyvisa.constants.StatusCode

write_memory (session, space, offset, data, width, extended="False)
Write in an 8-bit, 16-bit, 32-bit, 64-bit value to the specified memory space and offset.

Corresponds to viOut* functions of the VISA library.
Parameters
* session — Unique logical identifier to a session.
* space — Specifies the address space. (Constants.*SPACE*)

» offset — Offset (in bytes) of the address or register from which to read.

1.4.

API

57

https://docs.python.org/3/library/stdtypes.html#str

PyVISA Documentation, Release 1.10.1

e data — Data to write to bus.
e width — Number of bits to read.

* extended - Use 64 bits offset independent of the platform.

Returns return value of the library call.

Return type pyvisa.constants.StatusCode

1.4.2 Resource Manager

class pyvisa.highlevel.ResourcelInfo (interface_type, interface_board_number, resource_class,

resource_name, alias)
Resource extended information

Named tuple with information about a resource. Returned by some ResourceManager methods.

Interface_type Interface type of the given resource string.

pyvisa.constants.
InterfaceType

Interface_board_number Board number of the interface of the given resource string.
Resource_class Specifies the resource class (for example, “INSTR”) of the given resource string.

Resource_name This is the expanded version of the given resource string. The format should be
similar to the VISA-defined canonical resource name.

Alias Specifies the user-defined alias for the given resource string.
class pyvisa.highlevel.ResourceManager
VISA Resource Manager

Parameters visa_library — VisaLibrary Instance, path of the VISA library or VisaLibrary spec
string. (if not given, the default for the platform will be used).

close ()
Close the resource manager session.

last_status
Last status code returned for an operation with this Resource Manager
Return type pyvisa.constants.StatusCode
list_resources (query="?*::INSTR’)
Returns a tuple of all connected devices matching query.
note: The query uses the VISA Resource Regular Expression syntax - which is not the same

as the Python regular expression syntax. (see below)

The VISA Resource Regular Expression syntax is defined in the VISA Library specification: http:
/Iwww.ivifoundation.org/docs/vpp43.pdf

Symbol Meaning

? Matches any one character.

Makes the character that follows it an ordinary character instead of special character. For ex-

ample, when a question mark follows a backslash (?), it matches the ? character instead of any
one character.

[list] Matches any one character from the enclosed list. You can use a hyphen to match a range of
characters.

58

Chapter 1. General overview

http://www.ivifoundation.org/docs/vpp43.pdf
http://www.ivifoundation.org/docs/vpp43.pdf

PyVISA Documentation, Release 1.10.1

[*ist] Matches any character not in the enclosed list. You can use a hyphen to match a range of
characters.

* Matches 0 or more occurrences of the preceding character or expression.
» Matches 1 or more occurrences of the preceding character or expression.

Explexp Matches either the preceding or following expression. The or operator | matches the en-
tire expression that precedes or follows it and not just the character that precedes or follows it.
For example, VXIIGPIB means (VXDI(GPIB), not VX(IIG)PIB.

(exp) Grouping characters or expressions.

Thus the default query, ‘?*::INSTR’, matches any sequences of characters ending ending with ‘::IN-

STR’.

Parameters query — a VISA Resource Regular Expression used to match devices.

list_resources_info (query="?*::INSTR’)
Returns a dictionary mapping resource names to resource extended information of all connected devices
matching query.

For details of the VISA Resource Regular Expression syntax used in query, refer to list_resources().
Parameters query — a VISA Resource Regular Expression used to match devices.
Returns Mapping of resource name to Resourcelnfo
Return type dict[str, pyvisa.highlevel.ResourcelInfo]

open_bare_resource (resource_name, access_mode=<AccessModes.no_lock: 0>,
open_timeout=0)
Open the specified resource without wrapping into a class

Parameters
* resource_name — Name or alias of the resource to open.

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (int) — If the access_mode parameter requests a lock, then this
parameter specifies the absolute time period (in milliseconds) that the resource waits to
get unlocked before this operation returns an error.

Returns Unique logical identifier reference to a session.

open_resource (resource_name, access_mode=<AccessModes.no_lock: 0>, open_timeout=0, re-

source_pyclass=None, **kwargs)
Return an instrument for the resource name.

Parameters
* resource_name — Name or alias of the resource to open.

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (int) — If the access_mode parameter requests a lock, then this
parameter specifies the absolute time period (in milliseconds) that the resource waits to
get unlocked before this operation returns an error.

1.4.

API 59

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

* resource_pyclass — Resource Python class to use to instantiate the Resource. De-
faults to None: select based on the resource name.

* kwargs — Keyword arguments to be used to change instrument attributes after construc-
tion.

Return type pyvisa.resources.Resource

resource_info (resource_name, extended=True)
Get the (extended) information of a particular resource.

Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourceInfo

session
Resource Manager session handle.

Raises pyvisa.errors.InvalidSession if session is closed.

1.4.3 Resource classes

Resources are high level abstractions to managing specific sessions. An instance of one of these classes is returned by
the open_resource () depending on the resource type.

Generic classes

* Resource
* MessageBasedResource

* RegisterBasedResource

Specific Classes

* SeriallInstrument
e TCPIPInstrument
e TCPIPSocket

e USBInstrument

* USBRaw

* GPIBInstrument

* GPIBInterface

e FirewireInstrument
e PXIInstrument

* PXIInstrument

¢ VXIInstrument

* VXIMemory

* VXIBackplane

60 Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

class pyvisa.resources.Resource (resource_manager, resource_name)
Base class for resources.

Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().
Parameters
* resource_manager — A resource manager instance.
* resource_name — the VISA name for the resource (eg. “GPIB::10”)

before_close ()
Called just before closing an instrument.

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

disable_event (event_type, mechanism)
Disables notification of the specified event type(s) via the specified mechanism(s).

Parameters
* event_type — Logical event identifier.

* mechanism — Specifies event handling mechanisms to be disabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

discard_events (event_type, mechanism)
Discards event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be dicarded. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

enable_event (event_type, mechanism, context=None)
Enable event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be enabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR)

* context — Not currently used, leave as None.

get_visa_attribute (name)
Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.
Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.

implementation_version

1.4. API 61

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PyVISA Documentation, Release 1.10.1

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)
Type int
Range 0 <= value <= 4294967295
install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.
Parameters

* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

last_status
Last status code for this session.

Return type pyvisa.constants.StatusCode

lock (timeout="default’, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_context (timeout="default’, requested_key="exclusive’)
A context that locks

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

62

Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

* requested_key — When using default of ‘exclusive’ the lock is an exclusive lock.
Otherwise it is the access key for the shared lock or None to generate a new shared access
key.

The returned context is the access_key if applicable.

lock_excl (timeout="default’)
Establish an exclusive lock to the resource.

Parameters timeout — Absolute time period (in milliseconds) that a resource waits to get
unlocked by the locking session before returning an error. (Defaults to self.timeout)

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)
Type :class:pyvisa.constants.AccessModes
open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.
Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (int) — If the access_mode parameter requests a lock, then this
parameter specifies the absolute time period (in milliseconds) that the resource waits to
get unlocked before this operation returns an error.

classmethod register (interface_type, resource_class)
resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourcelInfo
resource_manufacturer_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

1.4.

API 63

https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.
VISA Attribute VI_ATTR_RSRC_NAME (3221159938)
session
Resource session handle.
Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_attribute (name, state)
Sets the state of an attribute.

Parameters
¢ name — Attribute for which the state is to be modified. (Attributes.*)
» state — The state of the attribute to be set for the specified object.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode
spec_version

VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.

VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)

Type int
Range 0 <= value <= 4294967295
timeout
The timeout in milliseconds for all resource I/O operations.

Special values:

e immediate (VI_TMO_IMMEDIATE): O (for convenience, any value smaller than 1 is considered as
0)

e infinite (VI_TMO_INFINITE): float ('+inf"') (for convenience, None is considered as
float ('+inf'))

To set an infinite timeout, you can also use:

>>> del instrument.timeout

uninstall_handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters

* event_type — Logical event identifier.

64 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - The user handle (ctypes object or None) returned by install_handler.

unlock ()
Relinquishes a lock for the specified resource.

visa_attributes_classes = [<class 'pyvisa.attributes.AttrVI_ATTR_RM SESSION'>, <class

wait_on_event (in_event type, timeout, capture_timeout="False)
Waits for an occurrence of the specified event in this resource.

Parameters
* in_event_type — Logical identifier of the event(s) to wait for.

* timeout — Absolute time period in time units that the resource shall wait for a specified
event to occur before returning the time elapsed error. The time unit is in milliseconds.
None means waiting forever if necessary.

* capture_timeout — When True will not produce a VisalOError(VI_ERROR_TMO)
but instead return a WaitResponse with timed_out=True

Returns A WaitResponse object that contains event_type, context and ret value.

class pyvisa.resources.MessageBasedResource (*args, **kwargs)
Base class for resources that use message based communication.

CR = '\r'
LF = '\n"

assert_trigger ()
Sends a software trigger to the device.

before_close ()
Called just before closing an instrument.

chunk_size = 20480

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

disable_event (event_type, mechanism)
Disables notification of the specified event type(s) via the specified mechanism(s).

Parameters
* event_type — Logical event identifier.

* mechanism — Specifies event handling mechanisms to be disabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

discard_events (event_type, mechanism)
Discards event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be dicarded. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

1.4. API 65

PyVISA Documentation, Release 1.10.1

enable_event (event_type, mechanism, context=None)
Enable event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be enabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR)

* context — Not currently used, leave as None.

encoding
Encoding used for read and write operations.

flush (mask)
Manually clears the specified buffers.

Depending on the value of the mask this can cause the buffer data to be written to the device.

Parameters mask — Specifies the action to be taken with flushing the buffer. See high-
level.VisaLibraryBase.flush for a detailed description.

get_visa_attribute (name)
Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.
Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.
implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)
Type int
Range 0 <= value <= 4294967295
install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.
Parameters
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle — A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

66 Chapter 1. General overview

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

interface_number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

last_status
Last status code for this session.

Return type pyvisa.constants.StatusCode

lock (timeout="default’, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_context (timeout="default’, requested_key="exclusive’)
A context that locks

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — When using default of ‘exclusive’ the lock is an exclusive lock.
Otherwise it is the access key for the shared lock or None to generate a new shared access
key.

The returned context is the access_key if applicable.

lock_excl (timeout="default’)
Establish an exclusive lock to the resource.

Parameters timeout — Absolute time period (in milliseconds) that a resource waits to get
unlocked by the locking session before returning an error. (Defaults to self.timeout)

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)
Type :class:pyvisa.constants.AccessModes
open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.

Parameters

1.4.

API 67

https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (int) — If the access_mode parameter requests a lock, then this
parameter specifies the absolute time period (in milliseconds) that the resource waits to
get unlocked before this operation returns an error.

query (message, delay=None)
A combination of write(message) and read()

Parameters
* message (st r) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.
Return type str

>

query_ascii_values (message, converter="f’, separator=", ’, container=<class ’list’>, de-

lay=None)
Query the device for values in ascii format returning an iterable of values.

Parameters
* message (str)— the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

¢ converter (callable) - function used to convert each element. Defaults to float

* separator — a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

* container - container type to use for the output data.
Type separator: (str) -> collections.Iterable[int] | str
Returns the answer from the device.
Return type list

query_binary values (message, datatype="f", is_big_endian=False, container=<class ’list’>, de-
lay=None, header_fmt="ieee’, expect_termination=True, data_points=0,

) chunk_size=None)))
Query the device for values in binary format returning an iterable of values.

Parameters
* message — the message to send to the instrument.
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess. Defaults to False.
* container — container type to use for the output data.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

* expect_termination — when set to False, the expected length of the binary values
block does not account for the final termination character (the read termination)

68 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

PyVISA Documentation, Release 1.10.1

* data_points — Number of points expected in the block. This is used only if the instru-
ment does not report it itself. This will be converted in a number of bytes based on the
datatype.

* chunk_size — Size of the chunks to read from the device. Using larger chunks may be
faster for large amount of data.

Returns the answer from the device.
Return type list
query _delay = 0.0

query_values (message, delay=None)
Query the device for values returning an iterable of values.

The datatype expected is obtained from values_format
Parameters
* message (st r)— the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.
Return type list

read (termination=None, encoding=None)
Read a string from the device.

Reading stops when the device stops sending (e.g. by setting appropriate bus lines), or the termination
characters sequence was detected. Attention: Only the last character of the termination characters is really
used to stop reading, however, the whole sequence is compared to the ending of the read string message.
If they don’t match, a warning is issued.

All line-ending characters are stripped from the end of the string.
Return type str

read_ascii_values (converter="f’, separator=", ’, container=<class ’list’>)
Read values from the device in ascii format returning an iterable of values.

Parameters

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

e converter (callable) - function used to convert each element. Defaults to float

* separator — a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

* container — container type to use for the output data.
Type separator: (str) -> collections.Iterable[int] | str
Returns the answer from the device.
Return type list

read_binary_ values (datatype='f", is_big_endian=False, container=<class "list’>,
header_fmt="ieee’, expect_termination=True, data_points=0,

chunk_size=None)))
Read values from the device in binary format returning an iterable of values.

1.4.

API 69

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

PyVISA Documentation, Release 1.10.1

Parameters
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess. Defaults to False.
* container — container type to use for the output data.

* header_fmt — format of the header prefixing the data. Possible values are: ‘ieee’, ‘hp’,
‘empty’

* expect_termination — when set to False, the expected length of the binary values
block does not account for the final termination character (the read termination)

* data_points — Number of points expected in the block. This is used only if the instru-
ment does not report it itself. This will be converted in a number of bytes based on the
datatype.

* chunk_size — Size of the chunks to read from the device. Using larger chunks may be
faster for large amount of data.

Returns the answer from the device.
Return type type(container)

read_bytes (count, chunk_size=None, break_on_termchar=False)
Read a certain number of bytes from the instrument.

Parameters
* count (int)— The number of bytes to read from the instrument.
* chunk_size (int) — The chunk size to use to perform the reading.

* break_on_termchar (bool)— Should the reading stop when a termination character
is encountered.

Return type bytes

read_ raw (size=None)
Read the unmodified string sent from the instrument to the computer.

In contrast to read(), no termination characters are stripped.
Parameters size — The chunk size to use when reading the data.
Return type bytes

read_stb()
Service request status register.

read_termination
Read termination character.

read termination_context (new_termination)

read_values (fint=None, container=<class ’list’>)
Read a list of floating point values from the device.

Parameters

* fmt — the format of the values. If given, it overrides the class attribute “values_format”.
Possible values are bitwise disjunctions of the above constants ascii, single, double, and
big_endian. Default is ascii.

* container - the output datatype

70 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

PyVISA Documentation, Release 1.10.1

Returns the list of read values
Return type list
classmethod register (interface_type, resource_class)
resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourcelInfo
resource_manufacturer_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.
VISA Attribute VI_ATTR_RSRC_NAME (3221159938)
session
Resource session handle.
Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_attribute (name, state)
Sets the state of an attribute.

Parameters
¢ name — Attribute for which the state is to be modified. (Attributes.*)
» state - The state of the attribute to be set for the specified object.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

spec_version

1.4.

API 71

https://docs.python.org/3/library/stdtypes.html#list

PyVISA Documentation, Release 1.10.1

VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.

VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)
Type int
Range 0 <= value <= 4294967295
stb
Service request status register.

timeout
The timeout in milliseconds for all resource I/O operations.

Special values:

e immediate (VI_TMO_IMMEDIATE): O (for convenience, any value smaller than 1 is considered as
0)

e infinite (VI_TMO_INFINITE): float ('+inf"') (for convenience, None is considered as
float ('+inf'))

To set an infinite timeout, you can also use:

>>> del instrument.timeout

uninstall_handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - The user handle (ctypes object or None) returned by install_handler.

unlock ()
Relinquishes a lock for the specified resource.

values_format
visa_attributes_classes = [<class 'pyvisa.attributes.AttrVI_ATTR RM SESSION'>, <class

wait_on_event (in_event_type, timeout, capture_timeout=False)
Waits for an occurrence of the specified event in this resource.

Parameters
* in_event_type — Logical identifier of the event(s) to wait for.

* timeout — Absolute time period in time units that the resource shall wait for a specified
event to occur before returning the time elapsed error. The time unit is in milliseconds.
None means waiting forever if necessary.

* capture_timeout — When True will not produce a VisalOError(VI_ERROR_TMO)
but instead return a WaitResponse with timed_out=True

Returns A WaitResponse object that contains event_type, context and ret value.

72 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

write (message, termination=None, encoding=None)
Write a string message to the device.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3))-the message to be sent.

e termination (unicode (Py2) or str (Py3))- alternative character termina-
tion to use.

* encoding (unicode (Py2) or str (Py3))-encoding to convert from unicode
to bytes.

Returns number of bytes written.
Return type int

write_ascii_values (message, values, converter="f’, separator=’, ’, termination=None, encod-
ing=None)
Write a string message to the device followed by values in ascii format.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3))-the message to be sent.
* values — data to be writen to the device.

* converter (callable | str)-{function used to convert each value. String format-
ting codes are also accepted. Defaults to ‘f’.

* separator — a callable that join the values in a single str. If a str is given, separa-
tor.join(values) is used.

Type separator: (collections.Iterable[T]) -> str | str
Returns number of bytes written.
Return type int

write_binary_ values (message, values, datatype="f", is_big_endian=False, termination=None,
encoding=None, header_fmt="ieee’)
Write a string message to the device followed by values in binary format.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3))-the message to be sent.
¢ values — data to be writen to the device.
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess.

* header_fmt — format of the header prefixing the data. Possible values are: ‘ieee’, ‘hp’,
‘empty’

Returns number of bytes written.
Return type int

write_raw (message)
Write a byte message to the device.

1.4.

API

73

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

Parameters message (bytes) — the message to be sent.
Returns number of bytes written.
Return type int

write_termination
Weriter termination character.

write_values (message, values, termination=None, encoding=None)

class pyvisa.resources.RegisterBasedResource (resource_manager, resource_name)
Base class for resources that use register based communication.

before close ()
Called just before closing an instrument.

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

disable_event (event_type, mechanism)
Disables notification of the specified event type(s) via the specified mechanism(s).

Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be disabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

discard_events (event_type, mechanism)
Discards event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism — Specifies event handling mechanisms to be dicarded. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

enable_event (event_type, mechanism, context=None)
Enable event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be enabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR)

* context — Not currently used, leave as None.

get_visa_attribute (name)
Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.
Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

74 Chapter 1. General overview

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PyVISA Documentation, Release 1.10.1

Parameters warnings_constants — constants identifying the warnings to ignore.

implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the

lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)
Type int
Range 0 <= value <= 4294967295
install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.
Parameters
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle — A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface_number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

last_status
Last status code for this session.

Return type pyvisa.constants.StatusCode

lock (timeout="default’, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_context (timeout="default’, requested_key="exclusive’)
A context that locks

1.4.

API

75

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — When using default of ‘exclusive’ the lock is an exclusive lock.
Otherwise it is the access key for the shared lock or None to generate a new shared access
key.

The returned context is the access_key if applicable.

lock_excl (timeout="default’)
Establish an exclusive lock to the resource.

Parameters timeout — Absolute time period (in milliseconds) that a resource waits to get
unlocked by the locking session before returning an error. (Defaults to self.timeout)

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)
Type :class:pyvisa.constants.AccessModes
move_in (space, offset, length, width, extended=False)
Moves a block of data to local memory from the specified address space and offset.
Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

* length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* width — Number of bits to read per element.
* extended — Use 64 bits offset independent of the platform.

move_out (space, offset, length, data, width, extended=False)
Moves a block of data from local memory to the specified address space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
» offset — Offset (in bytes) of the address or register from which to read.

¢ length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* data — Data to write to bus.
* width — Number of bits to read per element.
* extended — Use 64 bits offset independent of the platform.

open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.

Parameters

76 Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (int) — If the access_mode parameter requests a lock, then this
parameter specifies the absolute time period (in milliseconds) that the resource waits to
get unlocked before this operation returns an error.

read_memory (space, offset, width, extended=False)

Reads in an 8-bit, 16-bit, 32-bit, or 64-bit value from the specified memory space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* width — Number of bits to read.
* extended - Use 64 bits offset independent of the platform.

Returns Data read from memory.

Corresponds to viln* functions of the visa library.

classmethod register (interface_type, resource_class)

resource_class

VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the

canonical resource name.

VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)

resource_info

Get the extended information of this resource.

Parameters resource_name — Unique symbolic name of a resource.

Return type pyvisa.highlevel.ResourcelInfo

resource_manufacturer_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the

vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_NAME (3221159938)

1.4.

API

77

https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

session
Resource session handle.

Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_ attribute (name, state)
Sets the state of an attribute.

Parameters
* name — Attribute for which the state is to be modified. (Attributes.*)
* state — The state of the attribute to be set for the specified object.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode
spec_version

VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.

VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)
Type int
Range 0 <= value <=4294967295
timeout
The timeout in milliseconds for all resource I/O operations.
Special values:

¢ immediate (VI_TMO_IMMEDIATE): O (for convenience, any value smaller than 1 is considered as
0)

e infinite (VI_TMO_INFINITE): float ('+inf"') (for convenience, None is considered as
float ("+inf'))

To set an infinite timeout, you can also use:

>>> del instrument.timeout

uninstall_handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - The user handle (ctypes object or None) returned by install_handler.

unlock ()
Relinquishes a lock for the specified resource.

visa_attributes_classes = [<class 'pyvisa.attributes.AttrVI_ATTR RM SESSION'>, <class

78 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

wait_on_event (in_event_type, timeout, capture_timeout=False)
Waits for an occurrence of the specified event in this resource.

Parameters
* in_event_type — Logical identifier of the event(s) to wait for.

* timeout — Absolute time period in time units that the resource shall wait for a specified
event to occur before returning the time elapsed error. The time unit is in milliseconds.
None means waiting forever if necessary.

* capture_timeout — When True will not produce a VisalOError(VI_ERROR_TMO)
but instead return a WaitResponse with timed_out=True

Returns A WaitResponse object that contains event_type, context and ret value.

write_memory (space, offset, data, width, extended=False)
Write in an 8-bit, 16-bit, 32-bit, value to the specified memory space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
» offset — Offset (in bytes) of the address or register from which to read.
¢ data — Data to write to bus.
* width — Number of bits to read.
* extended — Use 64 bits offset independent of the platform.
Corresponds to viOut* functions of the visa library.

class pyvisa.resources.SerialInstrument (*args, **kwargs)
Communicates with devices of type ASRL<board>[::INSTR]

Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().

CR = '\r'
LF = '\n'
allow_dma

This attribute specifies whether I/0 accesses should use DMA (VI_TRUE) or Programmed 1/O
(VI_FALSE). In some implementations, this attribute may have global effects even though it is
documented to be a local attribute. Since this affects performance and not functionality, that behavior
is acceptable.

VISA Attribute VI_ATTR_DMA_ALLOW_EN (1073676318)

Type bool

allow _transmit

If set to VI_FALSE, it suspends transmission as if an XOFF character has been received. If set to
VI_TRUE, it resumes transmission as if an XON character has been received.

VISA Attribute VI_ATTR_ASRL_ALLOW_TRANSMIT (1073676734)
Type bool

assert_trigger ()
Sends a software trigger to the device.

1.4. API 79

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PyVISA Documentation, Release 1.10.1

baud_rate

VI_ATTR_ASRL_BAUD is the baud rate of the interface. It is represented as an unsigned 32-bit in-

teger so that any baud rate can be used, but it usually requires a commonly used rate such as 300,
1200, 2400, or 9600 baud.

VISA Attribute VI_ATTR_ASRL_BAUD (1073676321)

Type int
Range 0 <= value <=4294967295

before_close ()
Called just before closing an instrument.

break_length

This controls the duration (in milliseconds) of the break signal asserted when

VI_ATTR_ASRL_END_OUT is set to VI_ASRL_END_BREAK. If you want to control the
assertion state and length of a break signal manually, use the VI_ATTR_ASRL_BREAK_STATE
attribute instead.

VISA Attribute VI_ATTR_ASRL_BREAK_LEN (1073676733)

Type int
Range -32768 <= value <= 32767

break_state

If set to VI_STATE_ASSERTED, it suspends character transmission and places the transmission

line in a break state until this attribute is reset to VI_STATE_UNASSERTED. This attribute lets
you manually control the assertion state and length of a break signal. If you want VISA to send a
break signal after each write operation automatically, use the VI_ATTR_ASRL_BREAK_LEN and
VI_ATTR_ASRL_END_OUT attributes instead.

VISA Attribute VI_ATTR_ASRL_BREAK_STATE (1073676732)

Type :class:pyvisa.constants.LineState

bytes_in_buffer
VI_ATTR_ASRL_AVAIL_NUM shows the number of bytes available in the low- level /O receive

buffer.

VISA Attribute VI_ATTR_ASRL_AVAIL_NUM (1073676460)
Type int
Range 0 <= value <=4294967295

chunk_size = 20480

Clears this resource

Closes the VISA session and marks the handle as invalid.

data_bits

80

Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

VI_ATTR_ASRL_DATA_BITS is the number of data bits contained in each frame (from 5 to 8).
The data bits for each frame are located in the low-order bits of every byte stored in memory.

VISA Attribute VI_ATTR_ASRL_DATA_BITS (1073676322)
Type int

Range 5 <= value <=8
disable_event (event_type, mechanism)
Disables notification of the specified event type(s) via the specified mechanism(s).
Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be disabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

discard_events (event_type, mechanism)
Discards event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism — Specifies event handling mechanisms to be dicarded. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

discard null
If set to VI_TRUE, NUL characters are discarded. Otherwise, they are treated as normal data char-
acters. For binary transfers, set this attribute to VI_FALSE.
VISA Attribute VI_ATTR_ASRL_DISCARD_NULL (1073676464)
Type bool
enable_event (event_type, mechanism, context=None)
Enable event occurrences for specified event types and mechanisms in this resource.
Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be enabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR)

* context — Not currently used, leave as None.

encoding
Encoding used for read and write operations.

end_input

VI_ATTR_ASRL_END_IN indicates the method used to terminate read operations.

VISA Attribute VI_ATTR_ASRL_END_IN (1073676467)

Type :class:pyvisa.constants.Serial Termination

flow_control

1.4.

API 81

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PyVISA Documentation, Release 1.10.1

VI_ATTR_ASRL_FLOW_CNTRL indicates the type of flow control used by the transfer mecha-
nism.

VISA Attribute VI_ATTR_ASRL_FLOW_CNTRL (1073676325)
Type int
Range 0 <= value <= 65535
£lush (mask)
Manually clears the specified buffers.
Depending on the value of the mask this can cause the buffer data to be written to the device.

Parameters mask — Specifies the action to be taken with flushing the buffer. See high-
level.VisaLibraryBase.flush for a detailed description.

get_visa_attribute (name)
Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.
Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.
implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)
Type int
Range 0 <= value <= 4294967295
install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.
Parameters
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface_number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)

82 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

io_protocol

VI_ATTR_IO_PROT specifies which protocol to use. In VXI, you can choose normal word serial or
fast data channel (FDC). In GPIB, you can choose normal or high-speed (HS-488) transfers. In serial,
TCPIP, or USB RAW, you can choose normal transfers or 488.2-defined strings. In USB INSTR, you
can choose normal or vendor-specific transfers.
VISA Attribute VI_ATTR_IO_PROT (1073676316)
Type int
Range 0 <= value <= 65535

last_status
Last status code for this session.

Return type pyvisa.constants.StatusCode

lock (timeout="default’, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_context (timeout="default’, requested_key="exclusive’)
A context that locks

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — When using default of ‘exclusive’ the lock is an exclusive lock.
Otherwise it is the access key for the shared lock or None to generate a new shared access
key.

The returned context is the access_key if applicable.

lock_excl (timeout="default’)
Establish an exclusive lock to the resource.

Parameters timeout — Absolute time period (in milliseconds) that a resource waits to get
unlocked by the locking session before returning an error. (Defaults to self.timeout)

lock_state

VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.

1.4.

API 83

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)
Type :class:pyvisa.constants.AccessModes
open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.
Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (int) — If the access_mode parameter requests a lock, then this
parameter specifies the absolute time period (in milliseconds) that the resource waits to
get unlocked before this operation returns an error.

parity
VI_ATTR_ASRL_PARITY is the parity used with every frame transmitted and received.

VISA Attribute VI_ATTR_ASRL_PARITY (1073676323)
Type :class:pyvisa.constants.Parity
query (message, delay=None)
A combination of write(message) and read()
Parameters
* message (str) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.
Return type str

’

query_ascii_values (message, converter="f, separator=", ’, container=<class ’list’>, de-
lay=None)
Query the device for values in ascii format returning an iterable of values.

Parameters
* message (st r) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

* converter (callable) - function used to convert each element. Defaults to float

* separator — a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

* container — container type to use for the output data.
Type separator: (str) -> collections.Iterable[int] | str
Returns the answer from the device.
Return type list

query_binary values (message, datatype="f", is_big_endian=False, container=<class ’list’>, de-
lay=None, header_fmt=’ieee’, expect_termination=True, data_points=0,

) chunk_size=None)))
Query the device for values in binary format returning an iterable of values.

84 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

PyVISA Documentation, Release 1.10.1

Parameters
* message — the message to send to the instrument.
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess. Defaults to False.
* container — container type to use for the output data.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

* expect_termination — when set to False, the expected length of the binary values
block does not account for the final termination character (the read termination)

* data_points — Number of points expected in the block. This is used only if the instru-
ment does not report it itself. This will be converted in a number of bytes based on the
datatype.

* chunk_size — Size of the chunks to read from the device. Using larger chunks may be
faster for large amount of data.

Returns the answer from the device.
Return type list
query_delay = 0.0

query_values (message, delay=None)
Query the device for values returning an iterable of values.

The datatype expected is obtained from values_format
Parameters
* message (str)— the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.
Return type list

read (termination=None, encoding=None)
Read a string from the device.

Reading stops when the device stops sending (e.g. by setting appropriate bus lines), or the termination
characters sequence was detected. Attention: Only the last character of the termination characters is really
used to stop reading, however, the whole sequence is compared to the ending of the read string message.
If they don’t match, a warning is issued.

All line-ending characters are stripped from the end of the string.
Return type str

read_ascii_values (converter="f’, separator=", ’, container=<class ’list’>)
Read values from the device in ascii format returning an iterable of values.

Parameters

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

e converter (callable) - function used to convert each element. Defaults to float

1.4.

API 85

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

PyVISA Documentation, Release 1.10.1

* separator — a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

* container — container type to use for the output data.
Type separator: (str) -> collections.Iterable[int] | str
Returns the answer from the device.
Return type list

read_binary_values (datatype='f", is_big_endian=False, container=<class ’list’>,
header_fmt="ieee’, expect_termination=True, data_points=0,

chunk_size=None)))
Read values from the device in binary format returning an iterable of values.

Parameters
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess. Defaults to False.
* container — container type to use for the output data.

* header_fmt — format of the header prefixing the data. Possible values are: ‘ieee’, ‘hp’,
‘empty’

* expect_termination — when set to False, the expected length of the binary values
block does not account for the final termination character (the read termination)

* data points — Number of points expected in the block. This is used only if the instru-
ment does not report it itself. This will be converted in a number of bytes based on the
datatype.

* chunk_size — Size of the chunks to read from the device. Using larger chunks may be
faster for large amount of data.

Returns the answer from the device.
Return type type(container)

read_bytes (count, chunk_size=None, break_on_termchar=False)
Read a certain number of bytes from the instrument.

Parameters
* count (int)— The number of bytes to read from the instrument.
* chunk_size (int)— The chunk size to use to perform the reading.

* break_on_termchar (bool) - Should the reading stop when a termination character
is encountered.

Return type bytes

read_raw (size=None)
Read the unmodified string sent from the instrument to the computer.

In contrast to read(), no termination characters are stripped.
Parameters size — The chunk size to use when reading the data.
Return type bytes

read_stb ()
Service request status register.

86 Chapter 1. General overview

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

PyVISA Documentation, Release 1.10.1

read_termination
Read termination character.

read termination_context (new_termination)

read_values (fint=None, container=<class ’list’>)
Read a list of floating point values from the device.

Parameters

* fmt — the format of the values. If given, it overrides the class attribute “values_format”.
Possible values are bitwise disjunctions of the above constants ascii, single, double, and
big_endian. Default is ascii.

* container — the output datatype
Returns the list of read values
Return type list
classmethod register (interface_type, resource_class)
replace_char
VI_ATTR_ASRL_REPLACE_CHAR specifies the character to be used to replace incoming charac-
ters that arrive with errors (such as parity error).
VISA Attribute VI_ATTR_ASRL_REPLACE_CHAR (1073676478)
Type int

Range 0 <= value <= 255

resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourceInfo
resource_manufacturer_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

1.4.

API 87

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_NAME (3221159938)

send_end
VI_ATTR_SEND_END_EN specifies whether to assert END during the transfer of the last byte of
the buffer.

VISA Attribute VI_ATTR_SEND_END_EN (1073676310)
Type bool

session
Resource session handle.

Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_attribute (name, state)
Sets the state of an attribute.

Parameters
¢ name — Attribute for which the state is to be modified. (Attributes.*)
* state — The state of the attribute to be set for the specified object.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode
spec_version
VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.
VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)
Type int
Range 0 <= value <=4294967295
stb
Service request status register.
stop_bits
VI_ATTR_ASRL_STOP_BITS is the number of stop bits used to indicate the end of a frame. The
value VI_ASRL_STOP_ONES indicates one-and-one- half (1.5) stop bits.
VISA Attribute VI_ATTR_ASRL_STOP_BITS (1073676324)
Type :class:pyvisa.constants.StopBits
timeout

The timeout in milliseconds for all resource I/O operations.

Special values:

88 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

e immediate (VI_TMO_IMMEDIATE): O (for convenience, any value smaller than 1 is considered as
0)

e infinite (VI_TMO_INFINITE): float ('+inf"') (for convenience, None is considered as
float ("+inf'))

To set an infinite timeout, you can also use:

>>> del instrument.timeout

uninstall_handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - The user handle (ctypes object or None) returned by install_handler.

unlock ()
Relinquishes a lock for the specified resource.

values_format
visa_ attributes_classes = [<class 'pyvisa.attributes.AttrVI_ATTR RM SESSION'>, <class

wait_on_event (in_event_type, timeout, capture_timeout=False)
Waits for an occurrence of the specified event in this resource.

Parameters
* in event_type - Logical identifier of the event(s) to wait for.

* timeout — Absolute time period in time units that the resource shall wait for a specified
event to occur before returning the time elapsed error. The time unit is in milliseconds.
None means waiting forever if necessary.

* capture_timeout — When True will not produce a VisalOError(VI_ERROR_TMO)
but instead return a WaitResponse with timed_out=True

Returns A WaitResponse object that contains event_type, context and ret value.

write (message, termination=None, encoding=None)
Write a string message to the device.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3))-the message to be sent.

* termination (unicode (Py2) or str (Py3))- alternative character termina-
tion to use.

* encoding (unicode (Py2) or str (Py3))-encoding to convert from unicode
to bytes.

Returns number of bytes written.

Return type int

1.4.

API 89

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

write_ascii_values (message, values, converter="f’, separator=", ’, termination=None, encod-
ing=None)
Write a string message to the device followed by values in ascii format.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3))-the message to be sent.
* values — data to be writen to the device.

* converter (callable | str)-tfunction used to convert each value. String format-
ting codes are also accepted. Defaults to ‘f’.

* separator — a callable that join the values in a single str. If a str is given, separa-
tor.join(values) is used.

Type separator: (collections.Iterable[T]) -> str | str
Returns number of bytes written.
Return type int

write_binary values (message, values, datatype="f’, is_big_endian=False, termination=None,
encoding=None, header_fmt="ieee’)
Write a string message to the device followed by values in binary format.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3))-the message to be sent.
* values — data to be writen to the device.
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess.

* header_fmt — format of the header prefixing the data. Possible values are: ‘ieee’, ‘hp’,
‘empty’

Returns number of bytes written.
Return type int

write_raw (message)
Write a byte message to the device.

Parameters message (bytes) — the message to be sent.
Returns number of bytes written.
Return type int

write_termination
Writer termination character.

write_values (message, values, termination=None, encoding=None)
xoff char

VI_ATTR_ASRL_XOFF_CHAR specifies the value of the XOFF character used for ~XON/XOFF
flow control (both directions). If XON/XOFF flow control (software handshaking) is not being used,
the value of this attribute is ignored.

VISA Attribute VI_ATTR_ASRL_XOFF_CHAR (1073676482)

90 Chapter 1. General overview

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

Type int

Range 0 <= value <= 255

xon_char

VI_ATTR_ASRL_XON_CHAR specifies the value of the XON character used for XON/XOFF flow
control (both directions). If XON/XOFF flow control (software handshaking) is not being used, the
value of this attribute is ignored.

VISA Attribute VI_ATTR_ASRL_XON_CHAR (1073676481)
Type int

Range 0 <= value <= 255
class pyvisa.resources.TCPIPInstrument (*args, **kwargs)
Communicates with to devices of type TCPIP::host address[::INSTR]

More complex resource names can be specified with the following grammar: TCPIP[board]::host ad-
dress[::LAN device name][::INSTR]

Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().

CR = '\r'
LF = '"\n'
allow_dma

This attribute specifies whether I/0 accesses should use DMA (VI_TRUE) or Programmed I/O
(VI_FALSE). In some implementations, this attribute may have global effects even though it is
documented to be a local attribute. Since this affects performance and not functionality, that behavior
is acceptable.

VISA Attribute VI_ATTR_DMA_ALLOW_EN (1073676318)
Type bool

assert_trigger ()
Sends a software trigger to the device.

before close ()
Called just before closing an instrument.

chunk_size = 20480

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

control_ren (mode)
Controls the state of the GPIB Remote Enable (REN) interface line, and optionally the remote/local state
of the device.

Corresponds to viGpibControlREN function of the VISA library.

Parameters mode — Specifies the state of the REN line and optionally the device remote/local
state. (Constants.GPIB_REN¥*)

Returns return value of the library call.

1.4. API 91

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PyVISA Documentation, Release 1.10.1

Return type VISAStatus

disable_event (event_type, mechanism)
Disables notification of the specified event type(s) via the specified mechanism(s).

Parameters
* event_type — Logical event identifier.

* mechanism — Specifies event handling mechanisms to be disabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

discard_events (event_type, mechanism)
Discards event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism — Specifies event handling mechanisms to be dicarded. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

enable_event (event_type, mechanism, context=None)
Enable event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be enabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR)

¢ context — Not currently used, leave as None.

encoding
Encoding used for read and write operations.

£lush (mask)
Manually clears the specified buffers.

Depending on the value of the mask this can cause the buffer data to be written to the device.

Parameters mask — Specifies the action to be taken with flushing the buffer. See high-
level.VisaLibraryBase.flush for a detailed description.

get_visa_attribute (name)
Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.
Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.

implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

92

Chapter 1. General overview

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PyVISA Documentation, Release 1.10.1

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)
Type int
Range 0 <= value <= 4294967295
install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.
Parameters
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle — A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

last_status
Last status code for this session.

Return type pyvisa.constants.StatusCode

lock (timeout="default’, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_context (timeout="default’, requested_key="exclusive’)
A context that locks

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — When using default of ‘exclusive’ the lock is an exclusive lock.
Otherwise it is the access key for the shared lock or None to generate a new shared access
key.

The returned context is the access_key if applicable.

1.4.

API

93

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

lock_excl (timeout="default’)
Establish an exclusive lock to the resource.

Parameters timeout — Absolute time period (in milliseconds) that a resource waits to get
unlocked by the locking session before returning an error. (Defaults to self.timeout)

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)
Type :class:pyvisa.constants.AccessModes
open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.
Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (int) — If the access_mode parameter requests a lock, then this
parameter specifies the absolute time period (in milliseconds) that the resource waits to
get unlocked before this operation returns an error.

query (message, delay=None)
A combination of write(message) and read()

Parameters
* message (str) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.
Return type str

>

query_ascii_values (message, converter="f’, separator=’, ’, container=<class ’list’>, de-
lay=None)
Query the device for values in ascii format returning an iterable of values.

Parameters
* message (str)— the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

e converter (callable) - function used to convert each element. Defaults to float

* separator — a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

* container — container type to use for the output data.
Type separator: (str) -> collections.Iterable[int] | str
Returns the answer from the device.

Return type list

94 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

PyVISA Documentation, Release 1.10.1

query_binary values (message, datatype="f", is_big_endian=False, container=<class ’list’>, de-
lay=None, header_fmt="ieee’, expect_termination=True, data_points=0,

) chunk_size=None)))
Query the device for values in binary format returning an iterable of values.

Parameters
* message — the message to send to the instrument.
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess. Defaults to False.
* container — container type to use for the output data.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

* expect_termination — when set to False, the expected length of the binary values
block does not account for the final termination character (the read termination)

* data_points — Number of points expected in the block. This is used only if the instru-
ment does not report it itself. This will be converted in a number of bytes based on the
datatype.

* chunk_size — Size of the chunks to read from the device. Using larger chunks may be
faster for large amount of data.

Returns the answer from the device.
Return type list
query_delay = 0.0

query_values (message, delay=None)
Query the device for values returning an iterable of values.

The datatype expected is obtained from values_format
Parameters
* message (str)— the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.
Return type list

read (termination=None, encoding=None)
Read a string from the device.

Reading stops when the device stops sending (e.g. by setting appropriate bus lines), or the termination
characters sequence was detected. Attention: Only the last character of the termination characters is really
used to stop reading, however, the whole sequence is compared to the ending of the read string message.
If they don’t match, a warning is issued.

All line-ending characters are stripped from the end of the string.
Return type str

read_ascii_values (converter="f", separator=", ’, container=<class ’list’>)
Read values from the device in ascii format returning an iterable of values.

Parameters

1.4.

API 95

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

PyVISA Documentation, Release 1.10.1

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

e converter (callable) - function used to convert each element. Defaults to float

* separator — a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

* container — container type to use for the output data.
Type separator: (str) -> collections.Iterable[int] | str
Returns the answer from the device.
Return type list

read_binary_ values (datatype='f", is_big_endian=False, container=<class list’>,
header_fmt="ieee’, expect_termination=True, data_points=0,

chunk_size=None)))
Read values from the device in binary format returning an iterable of values.

Parameters
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess. Defaults to False.
* container — container type to use for the output data.

* header_fmt — format of the header prefixing the data. Possible values are: ‘ieee’, ‘hp’,
‘empty’

* expect_termination — when set to False, the expected length of the binary values
block does not account for the final termination character (the read termination)

* data_points — Number of points expected in the block. This is used only if the instru-
ment does not report it itself. This will be converted in a number of bytes based on the
datatype.

* chunk_size — Size of the chunks to read from the device. Using larger chunks may be
faster for large amount of data.

Returns the answer from the device.
Return type type(container)

read_bytes (count, chunk_size=None, break_on_termchar=False)
Read a certain number of bytes from the instrument.

Parameters
e count (int)— The number of bytes to read from the instrument.
* chunk_size (int)— The chunk size to use to perform the reading.

* break_on_termchar (bool)— Should the reading stop when a termination character
is encountered.

Return type bytes

read raw (size=None)
Read the unmodified string sent from the instrument to the computer.

In contrast to read(), no termination characters are stripped.
Parameters size — The chunk size to use when reading the data.

Return type bytes

96 Chapter 1. General overview

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

PyVISA Documentation, Release 1.10.1

read_stb ()

Service request status register.

read_termination

Read termination character.

read termination_context (new_termination)

read_values (fint=None, container=<class ’list’>)

Read a list of floating point values from the device.
Parameters

e fmt — the format of the values. If given, it overrides the class attribute “values_format”.
Possible values are bitwise disjunctions of the above constants ascii, single, double, and
big_endian. Default is ascii.

* container - the output datatype
Returns the list of read values

Return type list

classmethod register (interface_type, resource_class)

resource_class

VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.

VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)

resource_info

Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.

Return type pyvisa.highlevel.ResourcelInfo

resource_manufacturer_ name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_NAME (3221159938)

send_end

1.4.

API

97

https://docs.python.org/3/library/stdtypes.html#list

PyVISA Documentation, Release 1.10.1

VI_ATTR_SEND_END_EN specifies whether to assert END during the transfer of the last byte of
the buffer.

VISA Attribute VI_ATTR_SEND_END_EN (1073676310)
Type bool

session
Resource session handle.

Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_ attribute (name, state)
Sets the state of an attribute.

Parameters
¢ name — Attribute for which the state is to be modified. (Attributes.*)
» state — The state of the attribute to be set for the specified object.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode
spec_version
VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.
VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)
Type int
Range 0 <= value <= 4294967295
stb

Service request status register.

timeout
The timeout in milliseconds for all resource I/O operations.

Special values:

¢ immediate (VI_TMO_IMMEDIATE): O (for convenience, any value smaller than 1 is considered as
0)

e infinite (VI_TMO_INFINITE): float ('+inf"') (for convenience, None is considered as
float ('+inf'))

To set an infinite timeout, you can also use:

>>> del instrument.timeout

uninstall_handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters

* event_type — Logical event identifier.

98 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - The user handle (ctypes object or None) returned by install_handler.

unlock ()
Relinquishes a lock for the specified resource.

values_format

visa_ attributes_classes = [<class 'pyvisa.attributes.AttrVI_ATTR RM SESSION'>,

wait_on_event (in_event_type, timeout, capture_timeout=False)
Waits for an occurrence of the specified event in this resource.

Parameters
* in event_type - Logical identifier of the event(s) to wait for.

* timeout — Absolute time period in time units that the resource shall wait for a specified
event to occur before returning the time elapsed error. The time unit is in milliseconds.
None means waiting forever if necessary.

* capture_timeout — When True will not produce a VisalOError(VI_ERROR_TMO)
but instead return a WaitResponse with timed_out=True

Returns A WaitResponse object that contains event_type, context and ret value.

write (message, termination=None, encoding=None)
Write a string message to the device.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3))-the message to be sent.

* termination (unicode (Py2) or str (Py3))- alternative character termina-
tion to use.

* encoding (unicode (Py2) or str (Py3))-encoding to convert from unicode
to bytes.

Returns number of bytes written.
Return type int

write_ascii_values (message, values, converter="f’, separator=", ’, termination=None, encod-
ing=None)
Write a string message to the device followed by values in ascii format.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3))-the message to be sent.
* values — data to be writen to the device.

* converter (callable | str)-{function used to convert each value. String format-
ting codes are also accepted. Defaults to ‘f’.

* separator — a callable that join the values in a single str. If a str is given, separa-
tor.join(values) is used.

Type separator: (collections.Iterable[T]) -> str | str

Returns number of bytes written.

1.4.

API 99

<class

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

PyVISA Documentation, Release 1.10.1

Return type int

write_binary values (message, values, datatype="f", is_big_endian=False, termination=None,
encoding=None, header_fmt="ieee’)
Write a string message to the device followed by values in binary format.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3))-the message to be sent.
* values — data to be writen to the device.
* datatype — the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess.

* header_fmt - format of the header prefixing the data. Possible values are: ‘ieee’, ‘hp’,
‘empty’

Returns number of bytes written.
Return type int

write_raw (message)
Write a byte message to the device.

Parameters message (bytes) — the message to be sent.
Returns number of bytes written.
Return type int

write_termination
Weriter termination character.

write_values (message, values, termination=None, encoding=None)

class pyvisa.resources.TCPIPSocket (*args, **kwargs)
Communicates with to devices of type TCPIP::host address::port:: SOCKET

More complex resource names can be specified with the following grammar: TCPIP[board]::host ad-
dress::port::SOCKET

Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().
CR = '\r'
LF = '\n'

assert_trigger ()
Sends a software trigger to the device.

before_close ()
Called just before closing an instrument.

chunk_size = 20480

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

disable_event (event_type, mechanism)
Disables notification of the specified event type(s) via the specified mechanism(s).

100 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be disabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

discard_events (event_type, mechanism)
Discards event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism — Specifies event handling mechanisms to be dicarded. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

enable_event (event_type, mechanism, context=None)
Enable event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be enabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR)

* context — Not currently used, leave as None.

encoding
Encoding used for read and write operations.

flush (mask)
Manually clears the specified buffers.

Depending on the value of the mask this can cause the buffer data to be written to the device.

Parameters mask — Specifies the action to be taken with flushing the buffer. See high-
level.VisaLibraryBase.flush for a detailed description.

get_visa_attribute (name)
Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.
Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.
implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)
Type int

1.4.

API 101

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

Range 0 <= value <= 4294967295
install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.
Parameters
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

io_protocol

VI_ATTR_IO_PROT specifies which protocol to use. In VXI, you can choose normal word serial or
fast data channel (FDC). In GPIB, you can choose normal or high-speed (HS-488) transfers. In serial,
TCPIP, or USB RAW, you can choose normal transfers or 488.2-defined strings. In USB INSTR, you
can choose normal or vendor-specific transfers.

VISA Attribute VI_ATTR_IO_PROT (1073676316)
Type int
Range 0 <= value <= 65535
last_status
Last status code for this session.
Return type pyvisa.constants.StatusCode

lock (timeout="default’, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_context (timeout="default’, requested_key="exclusive’)
A context that locks

Parameters

102 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — When using default of ‘exclusive’ the lock is an exclusive lock.
Otherwise it is the access key for the shared lock or None to generate a new shared access
key.

The returned context is the access_key if applicable.

lock_excl (timeout="default’)
Establish an exclusive lock to the resource.

Parameters timeout — Absolute time period (in milliseconds) that a resource waits to get
unlocked by the locking session before returning an error. (Defaults to self.timeout)

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)
Type :class:pyvisa.constants.AccessModes
open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.
Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (int) — If the access_mode parameter requests a lock, then this
parameter specifies the absolute time period (in milliseconds) that the resource waits to
get unlocked before this operation returns an error.

query (message, delay=None)
A combination of write(message) and read()

Parameters
* message (str) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.
Return type str

’

query_ascii_values (message, converter="f’, separator=", ’, container=<class ’list’>, de-
lay=None)
Query the device for values in ascii format returning an iterable of values.

Parameters
* message (str)— the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

* converter (callable) - function used to convert each element. Defaults to float

* separator — a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

1.4.

API 103

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyVISA Documentation, Release 1.10.1

* container — container type to use for the output data.
Type separator: (str) -> collections.Iterable[int] | str
Returns the answer from the device.
Return type list

query_binary values (message, datatype="f", is_big_endian=False, container=<class ’list’>, de-
lay=None, header_fmt="ieee’, expect_termination=True, data_points=0,

chunk_size=None)
Query the device for values in binary format returning an iterable of values.

Parameters
* message — the message to send to the instrument.
* datatype — the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess. Defaults to False.
* container — container type to use for the output data.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

* expect_termination — when set to False, the expected length of the binary values
block does not account for the final termination character (the read termination)

* data_points — Number of points expected in the block. This is used only if the instru-
ment does not report it itself. This will be converted in a number of bytes based on the
datatype.

* chunk_size — Size of the chunks to read from the device. Using larger chunks may be
faster for large amount of data.

Returns the answer from the device.
Return type list
query_delay = 0.0

query_values (message, delay=None)
Query the device for values returning an iterable of values.

The datatype expected is obtained from values_format
Parameters
* message (str)— the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.
Return type list

read (termination=None, encoding=None)
Read a string from the device.

Reading stops when the device stops sending (e.g. by setting appropriate bus lines), or the termination
characters sequence was detected. Attention: Only the last character of the termination characters is really
used to stop reading, however, the whole sequence is compared to the ending of the read string message.
If they don’t match, a warning is issued.

All line-ending characters are stripped from the end of the string.

104 Chapter 1. General overview

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PyVISA Documentation, Release 1.10.1

Return type str

read_ascii_values (converter="f’, separator=", ’, container=<class ’list’>)
Read values from the device in ascii format returning an iterable of values.

Parameters

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

* converter (callable) - function used to convert each element. Defaults to float

* separator — a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

* container — container type to use for the output data.
Type separator: (str) -> collections.Iterable[int] | str
Returns the answer from the device.
Return type list

read_binary_ values (datatype='f", is_big_endian=False, container=<class list’>,
header_fmt="ieee’, expect_termination=True, data_points=0,

chunk_size=None)))
Read values from the device in binary format returning an iterable of values.

Parameters
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess. Defaults to False.
* container — container type to use for the output data.

* header_fmt — format of the header prefixing the data. Possible values are: ‘ieee’, ‘hp’,
‘empty’

* expect_termination — when set to False, the expected length of the binary values
block does not account for the final termination character (the read termination)

* data_points — Number of points expected in the block. This is used only if the instru-
ment does not report it itself. This will be converted in a number of bytes based on the
datatype.

* chunk_size — Size of the chunks to read from the device. Using larger chunks may be
faster for large amount of data.

Returns the answer from the device.
Return type type(container)

read_bytes (count, chunk_size=None, break_on_termchar=False)
Read a certain number of bytes from the instrument.

Parameters
e count (int)— The number of bytes to read from the instrument.
* chunk_size (int)— The chunk size to use to perform the reading.

* break_on_termchar (bool)— Should the reading stop when a termination character
is encountered.

Return type bytes

1.4.

API 105

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes

PyVISA Documentation, Release 1.10.1

read raw (size=None)
Read the unmodified string sent from the instrument to the computer.

In contrast to read(), no termination characters are stripped.
Parameters size — The chunk size to use when reading the data.
Return type bytes

read_stb ()
Service request status register.

read_termination
Read termination character.

read termination_context (new_termination)

read_values (fint=None, container=<class ’list’>)
Read a list of floating point values from the device.

Parameters

* fmt — the format of the values. If given, it overrides the class attribute “values_format”.
Possible values are bitwise disjunctions of the above constants ascii, single, double, and
big_endian. Default is ascii.

* container - the output datatype
Returns the list of read values
Return type list
classmethod register (interface_type, resource_class)
resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourceInfo
resource_manufacturer_ name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

106 Chapter 1. General overview

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list

PyVISA Documentation, Release 1.10.1

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_NAME (3221159938)
session
Resource session handle.

Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_attribute (name, state)
Sets the state of an attribute.

Parameters
* name — Attribute for which the state is to be modified. (Attributes.*)
* state - The state of the attribute to be set for the specified object.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode
spec_version

VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.

VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)

Type int
Range 0 <= value <=4294967295
stb
Service request status register.

timeout
The timeout in milliseconds for all resource I/O operations.

Special values:

e immediate (VI_TMO_IMMEDIATE): O (for convenience, any value smaller than 1 is considered as
0)

e infinite (VI_TMO_INFINITE): float ('+inf') (for convenience, None is considered as
float ('+inf'))

To set an infinite timeout, you can also use:

>>> del instrument.timeout

uninstall_handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

1.4.

API 107

https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

* user_handle - The user handle (ctypes object or None) returned by install_handler.

unlock ()
Relinquishes a lock for the specified resource.

values_format
visa_attributes_classes = [<class 'pyvisa.attributes.AttrVI_ATTR_RM SESSION'>, <class

wait_on_event (in_event_type, timeout, capture_timeout=False)
Wiaits for an occurrence of the specified event in this resource.

Parameters
* in_event_type - Logical identifier of the event(s) to wait for.

* timeout — Absolute time period in time units that the resource shall wait for a specified
event to occur before returning the time elapsed error. The time unit is in milliseconds.
None means waiting forever if necessary.

* capture_timeout — When True will not produce a VisalOError(VI_ERROR_TMO)
but instead return a WaitResponse with timed_out=True

Returns A WaitResponse object that contains event_type, context and ret value.

write (message, termination=None, encoding=None)
Write a string message to the device.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3))-the message to be sent.

e termination (unicode (Py2) or str (Py3))- alternative character termina-
tion to use.

* encoding (unicode (Py2) or str (Py3))-encoding toconvertfrom unicode
to bytes.

Returns number of bytes written.
Return type int

write_ascii_values (message, values, converter="f’, separator=", ’, termination=None, encod-
ing=None)
Write a string message to the device followed by values in ascii format.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3))-the message to be sent.
e values — data to be writen to the device.

* converter (callable | str)-{function used to converteach value. String format-
ting codes are also accepted. Defaults to ‘f’.

* separator - a callable that join the values in a single str. If a str is given, separa-
tor.join(values) is used.

Type separator: (collections.Iterable[T]) -> str | str
Returns number of bytes written.

Return type int

108 Chapter 1. General overview

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

write_binary values (message, values, datatype="f", is_big_endian=False, termination=None,

encoding=None, header_fint="ieee’)
Write a string message to the device followed by values in binary format.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3))-the message to be sent.
* values — data to be writen to the device.
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess.

* header_fmt — format of the header prefixing the data. Possible values are: ‘ieee’, ‘hp’,
‘empty’

Returns number of bytes written.
Return type int

write_raw (message)
Write a byte message to the device.

Parameters message (bytes) — the message to be sent.
Returns number of bytes written.
Return type int

write_termination
Weriter termination character.

write_values (message, values, termination=None, encoding=None)

class pyvisa.resources.USBInstrument (*args, **kwargs)
Communicates with devices of type USB::manufacturer ID::model code::serial number

More complex resource names can be specified with the following grammar: USB[board]::manufacturer
ID::model code::serial number[::USB interface number][::INSTR]

Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().
CR = '\r'
LF = '\n'

assert_trigger ()
Sends a software trigger to the device.

before_close ()
Called just before closing an instrument.

chunk_size = 20480

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

control_in (request_type_bitmap_field, request_id, request_value, index, length=0)
Performs a USB control pipe transfer from the device.

Parameters

1.4. API 109

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

* request_type_ bitmap_field - bmRequestType parameter of the setup stage of a
USB control transfer.

* request_id - bRequest parameter of the setup stage of a USB control transfer.
* request_value — wValue parameter of the setup stage of a USB control transfer.

* index — windex parameter of the setup stage of a USB control transfer. This is usually
the index of the interface or endpoint.

* length — wLength parameter of the setup stage of a USB control transfer. This value
also specifies the size of the data buffer to receive the data from the optional data stage of
the control transfer.

Returns The data buffer that receives the data from the optional data stage of the control transfer.
Return type bytes

control_out (request_type_bitmap_field, request_id, request_value, index, data="")
Performs a USB control pipe transfer to the device.

Parameters

* request_type bitmap_field - bmRequestType parameter of the setup stage of a
USB control transfer.

* request_id — bRequest parameter of the setup stage of a USB control transfer.
* request_value — wValue parameter of the setup stage of a USB control transfer.

* index — windex parameter of the setup stage of a USB control transfer. This is usually
the index of the interface or endpoint.

* data - The data buffer that sends the data in the optional data stage of the control transfer.

control_ren (mode)
Controls the state of the GPIB Remote Enable (REN) interface line, and optionally the remote/local state
of the device.

Corresponds to viGpibControlREN function of the VISA library.

Parameters mode — Specifies the state of the REN line and optionally the device remote/local
state. (Constants.GPIB_REN¥*)

Returns return value of the library call.
Return type VISAStatus

disable_event (event_type, mechanism)
Disables notification of the specified event type(s) via the specified mechanism(s).

Parameters
* event_type — Logical event identifier.

* mechanism — Specifies event handling mechanisms to be disabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

discard_events (event_type, mechanism)
Discards event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be dicarded. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

110 Chapter 1. General overview

https://docs.python.org/3/library/stdtypes.html#bytes

PyVISA Documentation, Release 1.10.1

enable_event (event_type, mechanism, context=None)
Enable event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be enabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR)

* context — Not currently used, leave as None.

encoding
Encoding used for read and write operations.

flush (mask)
Manually clears the specified buffers.

Depending on the value of the mask this can cause the buffer data to be written to the device.

Parameters mask — Specifies the action to be taken with flushing the buffer. See high-
level.VisaLibraryBase.flush for a detailed description.

get_visa_attribute (name)
Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.
Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.
implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)
Type int
Range 0 <= value <= 4294967295
install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.
Parameters
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle — A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

1.4.

API 111

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

interface_number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

io_protocol

VI_ATTR_IO_PROT specifies which protocol to use. In VXI, you can choose normal word serial or
fast data channel (FDC). In GPIB, you can choose normal or high-speed (HS-488) transfers. In serial,
TCPIP, or USB RAW, you can choose normal transfers or 488.2-defined strings. In USB INSTR, you
can choose normal or vendor-specific transfers.

VISA Attribute VI_ATTR_IO_PROT (1073676316)

Type int
Range 0 <= value <= 65535

is_4882_ compliant
VI_ATTR_4882_COMPLIANT specifies whether the device is 488.2 compliant.

VISA Attribute VI_ATTR_4882_COMPLIANT (1073676703)
Type bool

last_status
Last status code for this session.

Return type pyvisa.constants.StatusCode

lock (timeout="default’, requested_key=None)
Establish a shared lock to the resource.

Parameters

¢ timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_context (timeout="default’, requested_key="exclusive’)
A context that locks

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — When using default of ‘exclusive’ the lock is an exclusive lock.
Otherwise it is the access key for the shared lock or None to generate a new shared access
key.

112 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PyVISA Documentation, Release 1.10.1

The returned context is the access_key if applicable.

lock_excl (timeout="default’)
Establish an exclusive lock to the resource.

Parameters timeout — Absolute time period (in milliseconds) that a resource waits to get
unlocked by the locking session before returning an error. (Defaults to self.timeout)

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)

Type :class:pyvisa.constants.AccessModes

manufacturer_id

VI_ATTR_MANF _ID is the manufacturer identification number of the device.

VISA Attribute VI_ATTR_MANF_ID (1073676505)
Type int
Range 0 <= value <= 65535
manufacturer name
This string attribute is the manufacturer name.
VISA Attribute VI_ATTR_MANF_NAME (3221160050)
maximum_interrupt_size

VI_ATTR_USB_MAX_INTR_SIZE specifies the maximum size of data that will be stored by any
given USB interrupt. If a USB interrupt contains more data than this size, the data in excess of
this size will be lost.

VISA Attribute VI_ATTR_USB_MAX_INTR_SIZE (1073676719)
Type int
Range 0 <= value <= 65535
model_code
VI_ATTR_MODEL_CODE specifies the model code for the device.
VISA Attribute VI_ATTR_MODEL_CODE (1073676511)
Type int
Range 0 <= value <= 65535

model_ name
This string attribute is the model name of the device.

VISA Attribute VI_ATTR_MODEL_NAME (3221160055)

open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.

Parameters

1.4.

API 113

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (int) — If the access_mode parameter requests a lock, then this
parameter specifies the absolute time period (in milliseconds) that the resource waits to
get unlocked before this operation returns an error.

query (message, delay=None)
A combination of write(message) and read()

Parameters
* message (st r) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.
Return type str

>

query_ascii_values (message, converter="f’, separator=", ’, container=<class ’list’>, de-

lay=None)
Query the device for values in ascii format returning an iterable of values.

Parameters
* message (str)— the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

¢ converter (callable) - function used to convert each element. Defaults to float

* separator — a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

* container - container type to use for the output data.
Type separator: (str) -> collections.Iterable[int] | str
Returns the answer from the device.
Return type list

query_binary values (message, datatype="f", is_big_endian=False, container=<class ’list’>, de-
lay=None, header_fmt="ieee’, expect_termination=True, data_points=0,

) chunk_size=None)))
Query the device for values in binary format returning an iterable of values.

Parameters
* message — the message to send to the instrument.
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess. Defaults to False.
* container — container type to use for the output data.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

* expect_termination — when set to False, the expected length of the binary values
block does not account for the final termination character (the read termination)

114 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

PyVISA Documentation, Release 1.10.1

* data_points — Number of points expected in the block. This is used only if the instru-
ment does not report it itself. This will be converted in a number of bytes based on the
datatype.

* chunk_size — Size of the chunks to read from the device. Using larger chunks may be
faster for large amount of data.

Returns the answer from the device.
Return type list
query _delay = 0.0

query_values (message, delay=None)
Query the device for values returning an iterable of values.

The datatype expected is obtained from values_format
Parameters
* message (st r)— the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.
Return type list

read (termination=None, encoding=None)
Read a string from the device.

Reading stops when the device stops sending (e.g. by setting appropriate bus lines), or the termination
characters sequence was detected. Attention: Only the last character of the termination characters is really
used to stop reading, however, the whole sequence is compared to the ending of the read string message.
If they don’t match, a warning is issued.

All line-ending characters are stripped from the end of the string.
Return type str

read_ascii_values (converter="f’, separator=", ’, container=<class ’list’>)
Read values from the device in ascii format returning an iterable of values.

Parameters

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

e converter (callable) - function used to convert each element. Defaults to float

* separator — a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

* container — container type to use for the output data.
Type separator: (str) -> collections.Iterable[int] | str
Returns the answer from the device.
Return type list

read_binary_ values (datatype='f", is_big_endian=False, container=<class "list’>,
header_fmt="ieee’, expect_termination=True, data_points=0,

chunk_size=None)))
Read values from the device in binary format returning an iterable of values.

1.4.

API 115

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

PyVISA Documentation, Release 1.10.1

Parameters
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess. Defaults to False.
* container — container type to use for the output data.

* header_fmt — format of the header prefixing the data. Possible values are: ‘ieee’, ‘hp’,
‘empty’

* expect_termination — when set to False, the expected length of the binary values
block does not account for the final termination character (the read termination)

* data_points — Number of points expected in the block. This is used only if the instru-
ment does not report it itself. This will be converted in a number of bytes based on the
datatype.

* chunk_size — Size of the chunks to read from the device. Using larger chunks may be
faster for large amount of data.

Returns the answer from the device.
Return type type(container)

read_bytes (count, chunk_size=None, break_on_termchar=False)
Read a certain number of bytes from the instrument.

Parameters
* count (int)— The number of bytes to read from the instrument.
* chunk_size (int) — The chunk size to use to perform the reading.

* break_on_termchar (bool)— Should the reading stop when a termination character
is encountered.

Return type bytes

read_ raw (size=None)
Read the unmodified string sent from the instrument to the computer.

In contrast to read(), no termination characters are stripped.
Parameters size — The chunk size to use when reading the data.
Return type bytes

read_stb()
Service request status register.

read_termination
Read termination character.

read termination_context (new_termination)

read_values (fint=None, container=<class ’list’>)
Read a list of floating point values from the device.

Parameters

* fmt — the format of the values. If given, it overrides the class attribute “values_format”.
Possible values are bitwise disjunctions of the above constants ascii, single, double, and
big_endian. Default is ascii.

* container - the output datatype

116 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

PyVISA Documentation, Release 1.10.1

Returns the list of read values
Return type list
classmethod register (interface_type, resource_class)
resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourcelInfo
resource_manufacturer_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_NAME (3221159938)

send_end
VI_ATTR_SEND_END_EN specifies whether to assert END during the transfer of the last byte of
the buffer.

VISA Attribute VI_ATTR_SEND_END_EN (1073676310)
Type bool

serial_ number
VI_ATTR_USB_SERIAL_NUM specifies the USB serial number of this device.

VISA Attribute VI_ATTR_USB_SERIAL_NUM (3221160352)

session
Resource session handle.

Raises pyvisa.errors.InvalidSession if session is closed.

1.4.

API 117

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

PyVISA Documentation, Release 1.10.1

set_visa_ attribute (name, state)
Sets the state of an attribute.

Parameters
¢ name — Attribute for which the state is to be modified. (Attributes.*)
* state — The state of the attribute to be set for the specified object.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode
spec_version

VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.

VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)
Type int
Range 0 <= value <= 4294967295

stb

Service request status register.

timeout
The timeout in milliseconds for all resource I/O operations.

Special values:

¢ immediate (VI_TMO_IMMEDIATE): O (for convenience, any value smaller than 1 is considered as
0)

e infinite (VI_TMO_INFINITE): float ('+inf"') (for convenience, None is considered as
float ('+inf'))

To set an infinite timeout, you can also use:

>>> del instrument.timeout

uninstall_handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - The user handle (ctypes object or None) returned by install_handler.

unlock ()
Relinquishes a lock for the specified resource.

usb_control_out (request_type_bitmap_field, request_id, request_value, index, data="")
Performs a USB control pipe transfer to the device. (Deprecated)

Parameters

118 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

* request_type_ bitmap_field - bmRequestType parameter of the setup stage of a
USB control transfer.

* request_id - bRequest parameter of the setup stage of a USB control transfer.
* request_value — wValue parameter of the setup stage of a USB control transfer.

* index — windex parameter of the setup stage of a USB control transfer. This is usually
the index of the interface or endpoint.

* data - The data buffer that sends the data in the optional data stage of the control transfer.
usb_protocol
VI_ATTR_USB_PROTOCOL specifies the USB protocol used by this USB interface.

VISA Attribute VI_ATTR_USB_PROTOCOL (1073676711)
Type int

Range 0 <= value <= 255

values_format

visa_attributes_classes = [<class 'pyvisa.attributes.AttrVI_ATTR RM SESSION'>,

wait_on_event (in_event_type, timeout, capture_timeout=False)
Waits for an occurrence of the specified event in this resource.

Parameters
* in_event_type - Logical identifier of the event(s) to wait for.

* timeout — Absolute time period in time units that the resource shall wait for a specified
event to occur before returning the time elapsed error. The time unit is in milliseconds.
None means waiting forever if necessary.

* capture_timeout — When True will not produce a VisalOError(VI_ERROR_TMO)
but instead return a WaitResponse with timed_out=True

Returns A WaitResponse object that contains event_type, context and ret value.

write (message, termination=None, encoding=None)
Write a string message to the device.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3))-the message to be sent.

* termination (unicode (Py2) or str (Py3))- alternative character termina-
tion to use.

* encoding (unicode (Py2) or str (Py3))-encoding to convertfrom unicode
to bytes.

Returns number of bytes written.
Return type int

write_ascii_values (message, values, converter="f’, separator=", ’, termination=None, encod-
ing=None)
Write a string message to the device followed by values in ascii format.

The write_termination is always appended to it.

1.4.

API 119

<class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

Parameters
* message (unicode (Py2) or str (Py3))-the message to be sent.
e values — data to be writen to the device.

* converter (callable | str)-function used to convert each value. String format-
ting codes are also accepted. Defaults to ‘f’.

* separator — a callable that join the values in a single str. If a str is given, separa-
tor.join(values) is used.

Type separator: (collections.Iterable[T]) -> str | str
Returns number of bytes written.
Return type int

write_binary_ values (message, values, datatype="f", is_big_endian=False, termination=None,
encoding=None, header_fmt="ieee’)
Write a string message to the device followed by values in binary format.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3))-the message to be sent.
* values — data to be writen to the device.
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess.

* header_fmt — format of the header prefixing the data. Possible values are: ‘ieee’, ‘hp’,
‘empty’

Returns number of bytes written.
Return type int

write_raw (message)
Write a byte message to the device.

Parameters message (bytes) — the message to be sent.
Returns number of bytes written.
Return type int

write_termination
Writer termination character.

write_values (message, values, termination=None, encoding=None)

class pyvisa.resources.USBRaw (*args, **kwargs)
Communicates with to devices of type USB::manufacturer ID::model code::serial number::RAW

More complex resource names can be specified with the following grammar: USB[board]::manufacturer
ID::model code::serial number[::USB interface number]::RAW

Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().
CR = '\r'
LF = '\n"

assert_trigger ()
Sends a software trigger to the device.

120 Chapter 1. General overview

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

before_close ()
Called just before closing an instrument.

chunk_size = 20480

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

disable_event (event_type, mechanism)
Disables notification of the specified event type(s) via the specified mechanism(s).

Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be disabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

discard_events (event_type, mechanism)
Discards event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism — Specifies event handling mechanisms to be dicarded. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

enable_event (event_type, mechanism, context=None)
Enable event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be enabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR)

* context — Not currently used, leave as None.

encoding
Encoding used for read and write operations.

flush (mask)
Manually clears the specified buffers.

Depending on the value of the mask this can cause the buffer data to be written to the device.

Parameters mask — Specifies the action to be taken with flushing the buffer. See high-
level.VisaLibraryBase.flush for a detailed description.

get_visa_attribute (name)
Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.
Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants - constants identifying the warnings to ignore.

1.4.

API 121

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PyVISA Documentation, Release 1.10.1

implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)
Type int
Range 0 <= value <= 4294967295
install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.
Parameters

* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface_number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

io_protocol

VI_ATTR_IO_PROT specifies which protocol to use. In VXI, you can choose normal word serial or
fast data channel (FDC). In GPIB, you can choose normal or high-speed (HS-488) transfers. In serial,
TCPIP, or USB RAW, you can choose normal transfers or 488.2-defined strings. In USB INSTR, you
can choose normal or vendor-specific transfers.

VISA Attribute VI_ATTR_IO_PROT (1073676316)
Type int
Range 0 <= value <= 65535
last_status
Last status code for this session.
Return type pyvisa.constants.StatusCode

lock (timeout="default’, requested_key=None)
Establish a shared lock to the resource.

Parameters

122 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_context (timeout="default’, requested_key="exclusive’)
A context that locks

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — When using default of ‘exclusive’ the lock is an exclusive lock.
Otherwise it is the access key for the shared lock or None to generate a new shared access
key.

The returned context is the access_key if applicable.

lock_excl (timeout="default’)
Establish an exclusive lock to the resource.

Parameters timeout — Absolute time period (in milliseconds) that a resource waits to get
unlocked by the locking session before returning an error. (Defaults to self.timeout)

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)

Type :class:pyvisa.constants.AccessModes

manufacturer id

VI_ATTR_MANF_ID is the manufacturer identification number of the device.

VISA Attribute VI_ATTR_MANF_ID (1073676505)
Type int
Range 0 <= value <= 65535
manufacturer_ name
This string attribute is the manufacturer name.
VISA Attribute VI_ATTR_MANF_NAME (3221160050)
maximum_interrupt_size

VI_ATTR_USB_MAX_INTR_SIZE specifies the maximum size of data that will be stored by any
given USB interrupt. If a USB interrupt contains more data than this size, the data in excess of
this size will be lost.

VISA Attribute VI_ATTR_USB_MAX_INTR_SIZE (1073676719)
Type int
Range 0 <= value <= 65535

1.4.

API 123

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

model_code
VI_ATTR_MODEL_CODE specifies the model code for the device.

VISA Attribute VI_ATTR_MODEL_CODE (1073676511)
Type int
Range 0 <= value <= 65535

model_ name
This string attribute is the model name of the device.

VISA Attribute VI_ATTR_MODEL_NAME (3221160055)

open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.

Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (int) — If the access_mode parameter requests a lock, then this
parameter specifies the absolute time period (in milliseconds) that the resource waits to
get unlocked before this operation returns an error.

query (message, delay=None)
A combination of write(message) and read()

Parameters
* message (str)— the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.

Return type str

>

query_ascii_values (message, converter="f

lay=None)
Query the device for values in ascii format returning an iterable of values.

, Separator=", ’, container=<class ’list’>, de-

Parameters
* message (str) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

e converter (callable) - function used to convert each element. Defaults to float

* separator — a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

* container — container type to use for the output data.
Type separator: (str) -> collections.Iterable[int] | str
Returns the answer from the device.

Return type list

124 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

PyVISA Documentation, Release 1.10.1

query_binary values (message, datatype="f", is_big_endian=False, container=<class ’list’>, de-
lay=None, header_fmt="ieee’, expect_termination=True, data_points=0,

) chunk_size=None)))
Query the device for values in binary format returning an iterable of values.

Parameters
* message — the message to send to the instrument.
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess. Defaults to False.
* container — container type to use for the output data.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

* expect_termination — when set to False, the expected length of the binary values
block does not account for the final termination character (the read termination)

* data_points — Number of points expected in the block. This is used only if the instru-
ment does not report it itself. This will be converted in a number of bytes based on the
datatype.

* chunk_size — Size of the chunks to read from the device. Using larger chunks may be
faster for large amount of data.

Returns the answer from the device.
Return type list
query_delay = 0.0

query_values (message, delay=None)
Query the device for values returning an iterable of values.

The datatype expected is obtained from values_format
Parameters
* message (str)— the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.
Return type list

read (termination=None, encoding=None)
Read a string from the device.

Reading stops when the device stops sending (e.g. by setting appropriate bus lines), or the termination
characters sequence was detected. Attention: Only the last character of the termination characters is really
used to stop reading, however, the whole sequence is compared to the ending of the read string message.
If they don’t match, a warning is issued.

All line-ending characters are stripped from the end of the string.
Return type str

read_ascii_values (converter="f", separator=", ’, container=<class ’list’>)
Read values from the device in ascii format returning an iterable of values.

Parameters

1.4.

API 125

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

PyVISA Documentation, Release 1.10.1

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

e converter (callable) - function used to convert each element. Defaults to float

* separator — a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

* container — container type to use for the output data.
Type separator: (str) -> collections.Iterable[int] | str
Returns the answer from the device.
Return type list

read_binary_ values (datatype='f", is_big_endian=False, container=<class list’>,
header_fmt="ieee’, expect_termination=True, data_points=0,

chunk_size=None)))
Read values from the device in binary format returning an iterable of values.

Parameters
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess. Defaults to False.
* container — container type to use for the output data.

* header_fmt — format of the header prefixing the data. Possible values are: ‘ieee’, ‘hp’,
‘empty’

* expect_termination — when set to False, the expected length of the binary values
block does not account for the final termination character (the read termination)

* data_points — Number of points expected in the block. This is used only if the instru-
ment does not report it itself. This will be converted in a number of bytes based on the
datatype.

* chunk_size — Size of the chunks to read from the device. Using larger chunks may be
faster for large amount of data.

Returns the answer from the device.
Return type type(container)

read_bytes (count, chunk_size=None, break_on_termchar=False)
Read a certain number of bytes from the instrument.

Parameters
e count (int)— The number of bytes to read from the instrument.
* chunk_size (int)— The chunk size to use to perform the reading.

* break_on_termchar (bool)— Should the reading stop when a termination character
is encountered.

Return type bytes

read raw (size=None)
Read the unmodified string sent from the instrument to the computer.

In contrast to read(), no termination characters are stripped.
Parameters size — The chunk size to use when reading the data.

Return type bytes

126 Chapter 1. General overview

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

PyVISA Documentation, Release 1.10.1

read_stb ()
Service request status register.

read_termination
Read termination character.

read termination_context (new_termination)

read_values (fint=None, container=<class ’list’>)
Read a list of floating point values from the device.

Parameters

e fmt — the format of the values. If given, it overrides the class attribute “values_format”.
Possible values are bitwise disjunctions of the above constants ascii, single, double, and
big_endian. Default is ascii.

* container - the output datatype
Returns the list of read values
Return type list
classmethod register (interface_type, resource_class)
resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourcelInfo
resource_manufacturer_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_NAME (3221159938)

serial_ number
VI_ATTR_USB_SERIAL_NUM specifies the USB serial number of this device.

1.4.

API 127

https://docs.python.org/3/library/stdtypes.html#list

PyVISA Documentation, Release 1.10.1

VISA Attribute VI_ATTR_USB_SERIAL_NUM (3221160352)

session
Resource session handle.

Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_ attribute (name, state)
Sets the state of an attribute.

Parameters
¢ name — Attribute for which the state is to be modified. (Attributes.*)
» state — The state of the attribute to be set for the specified object.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode
spec_version
VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.
VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)
Type int
Range 0 <= value <= 4294967295
stb

Service request status register.

timeout
The timeout in milliseconds for all resource I/O operations.

Special values:

¢ immediate (VI_TMO_IMMEDIATE): O (for convenience, any value smaller than 1 is considered as
0)

e infinite (VI_TMO_INFINITE): float ('+inf"') (for convenience, None is considered as
float ('+inf'))

To set an infinite timeout, you can also use:

>>> del instrument.timeout

uninstall_handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - The user handle (ctypes object or None) returned by install_handler.

128 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

unlock ()
Relinquishes a lock for the specified resource.

usb_protocol
VI_ATTR_USB_PROTOCOL specifies the USB protocol used by this USB interface.

VISA Attribute VI_ATTR_USB_PROTOCOL (1073676711)
Type int

Range 0 <= value <= 255

values_format
visa_attributes_classes = [<class 'pyvisa.attributes.AttrVI_ATTR RM SESSION'>,

wait_on_event (in_event_type, timeout, capture_timeout=False)
Waits for an occurrence of the specified event in this resource.

Parameters
* in_event_type - Logical identifier of the event(s) to wait for.

* timeout — Absolute time period in time units that the resource shall wait for a specified
event to occur before returning the time elapsed error. The time unit is in milliseconds.
None means waiting forever if necessary.

* capture_timeout — When True will not produce a VisalOError(VI_ERROR_TMO)
but instead return a WaitResponse with timed_out=True

Returns A WaitResponse object that contains event_type, context and ret value.

write (message, termination=None, encoding=None)
Write a string message to the device.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3))-the message to be sent.

e termination (unicode (Py2) or str (Py3))- alternative character termina-
tion to use.

* encoding (unicode (Py2) or str (Py3))-encoding to convert from unicode
to bytes.

Returns number of bytes written.
Return type int

write_ascii_values (message, values, converter="f’, separator=", ’, termination=None, encod-
ing=None)
Write a string message to the device followed by values in ascii format.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3))-the message to be sent.
* values — data to be writen to the device.

* converter (callable | str)-functionused to converteach value. String format-
ting codes are also accepted. Defaults to ‘f’.

1.4.

API 129

<class

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

PyVISA Documentation, Release 1.10.1

* separator — a callable that join the values in a single str. If a str is given, separa-
tor.join(values) is used.

Type separator: (collections.Iterable[T]) -> str | str
Returns number of bytes written.
Return type int

write_binary values (message, values, datatype="f", is_big_endian=False, termination=None,
encoding=None, header_fmt="ieee’)
Write a string message to the device followed by values in binary format.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3))-the message to be sent.
¢ values — data to be writen to the device.
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess.

* header_fmt — format of the header prefixing the data. Possible values are: ‘ieee’, ‘hp’,
‘empty’

Returns number of bytes written.
Return type int

write_raw (message)
Write a byte message to the device.

Parameters message (bytes) — the message to be sent.
Returns number of bytes written.
Return type int

write_termination
Weriter termination character.

write_values (message, values, termination=None, encoding=None)

class pyvisa.resources.GPIBInstrument (*args, **kwargs)
Communicates with to devices of type GPIB::<primary address>[::INSTR]

More complex resource names can be specified with the following grammar: GPIB[board]::primary
address[::secondary address][::INSTR]

Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().

CR = '\r'
LF = '\n'
allow_dma

This attribute specifies whether I/0 accesses should use DMA (VI_TRUE) or Programmed 1/O
(VI_FALSE). In some implementations, this attribute may have global effects even though it is
documented to be a local attribute. Since this affects performance and not functionality, that behavior
is acceptable.

VISA Attribute VI_ATTR_DMA_ALLOW_EN (1073676318)
Type bool

130 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PyVISA Documentation, Release 1.10.1

assert_trigger ()
Sends a software trigger to the device.

before_close ()
Called just before closing an instrument.

chunk_size = 20480

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

control_ atn (mode)
Specifies the state of the ATN line and the local active controller state.

Corresponds to viGpibControlATN function of the VISA library.

Parameters mode — Specifies the state of the ATN line and optionally the local active controller
state. (Constants.GPIB_ATN*)

Returns return value of the library call.
Return type VISAStatus

control ren (mode)
Controls the state of the GPIB Remote Enable (REN) interface line, and optionally the remote/local state
of the device.

Corresponds to viGpibControlREN function of the VISA library.

Parameters mode — Specifies the state of the REN line and optionally the device remote/local
state. (Constants. GPIB_REN%*)

Returns return value of the library call.
Return type VISAStatus

disable_event (event_type, mechanism)
Disables notification of the specified event type(s) via the specified mechanism(s).

Parameters
* event_type — Logical event identifier.

* mechanism — Specifies event handling mechanisms to be disabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

discard_events (event_type, mechanism)
Discards event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism — Specifies event handling mechanisms to be dicarded. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

enable_event (event_type, mechanism, context=None)
Enable event occurrences for specified event types and mechanisms in this resource.

Parameters

* event_type — Logical event identifier.

1.4.

API 131

PyVISA Documentation, Release 1.10.1

* mechanism - Specifies event handling mechanisms to be enabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR)

* context — Not currently used, leave as None.
enable_repeat_addressing
VI_ATTR_GPIB_READDR_EN specifies whether to use repeat addressing before each read or write

operation.

VISA Attribute VI_ATTR_GPIB_READDR_EN (1073676315)
Type bool

enable_unaddressing
VI_ATTR_GPIB_UNADDR_EN specifies whether to unaddress the device (UNT and UNL) after
each read or write operation.
VISA Attribute VI_ATTR_GPIB_UNADDR_EN (1073676676)
Type bool
encoding
Encoding used for read and write operations.

flush (mask)
Manually clears the specified buffers.

Depending on the value of the mask this can cause the buffer data to be written to the device.

Parameters mask — Specifies the action to be taken with flushing the buffer. See high-
level.VisaLibraryBase.flush for a detailed description.

get_visa_attribute (name)
Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.
Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.
implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)

Type int
Range 0 <= value <=4294967295

132 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.

Parameters
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

io_protocol

VI_ATTR_IO_PROT specifies which protocol to use. In VXI, you can choose normal word serial or
fast data channel (FDC). In GPIB, you can choose normal or high-speed (HS-488) transfers. In serial,
TCPIP, or USB RAW, you can choose normal transfers or 488.2-defined strings. In USB INSTR, you
can choose normal or vendor-specific transfers.
VISA Attribute VI_ATTR_IO_PROT (1073676316)
Type int
Range 0 <= value <= 65535

last_status

Last status code for this session.

Return type pyvisa.constants.StatusCode

lock (timeout="default’, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_context (timeout="default’, requested_key="exclusive’)
A context that locks

Parameters

1.4.

API 133

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — When using default of ‘exclusive’ the lock is an exclusive lock.
Otherwise it is the access key for the shared lock or None to generate a new shared access
key.

The returned context is the access_key if applicable.

lock_excl (timeout="default’)
Establish an exclusive lock to the resource.

Parameters timeout — Absolute time period (in milliseconds) that a resource waits to get
unlocked by the locking session before returning an error. (Defaults to self.timeout)

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)
Type :class:pyvisa.constants.AccessModes
open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.
Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (int) — If the access_mode parameter requests a lock, then this
parameter specifies the absolute time period (in milliseconds) that the resource waits to
get unlocked before this operation returns an error.

pass_control (primary_address, secondary_address)
Tell the GPIB device at the specified address to become controller in charge (CIC).

Corresponds to viGpibPassControl function of the VISA library.
Parameters

e primary_address — Primary address of the GPIB device to which you want to pass
control.

* secondary_address — Secondary address of the targeted GPIB device. If the tar-
geted device does not have a secondary address, this parameter should contain the value
Constants. NO_SEC_ADDR.

Returns return value of the library call.
Return type VISAStatus
primary_address
VI_ATTR_GPIB_PRIMARY_ADDR specifies the primary address of the GPIB device used by the
given session. For the GPIB INTFC Resource, this attribute is Read-Write.
VISA Attribute VI_ATTR_GPIB_PRIMARY_ADDR (1073676658)
Type int

Range 0 <= value <= 30

134 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

query (message, delay=None)
A combination of write(message) and read()

Parameters
* message (st r) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.
Return type str

>

query_ascii_values (message, converter="f’, separator=", ’, container=<class ’list’>, de-

lay=None)
Query the device for values in ascii format returning an iterable of values.

Parameters
* message (str) — the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

¢ converter (callable) - function used to convert each element. Defaults to float

* separator — a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

* container — container type to use for the output data.
Type separator: (str) -> collections.Iterable[int] | str
Returns the answer from the device.
Return type list

query_binary_ values (message, datatype="f", is_big_endian=False, container=<class ’list’>, de-
lay=None, header_fmt="ieee’, expect_termination=True, data_points=0,

) chunk_size=None)))
Query the device for values in binary format returning an iterable of values.

Parameters
* message — the message to send to the instrument.
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess. Defaults to False.
* container — container type to use for the output data.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

* expect_termination — when set to False, the expected length of the binary values
block does not account for the final termination character (the read termination)

* data_points — Number of points expected in the block. This is used only if the instru-
ment does not report it itself. This will be converted in a number of bytes based on the
datatype.

* chunk_size — Size of the chunks to read from the device. Using larger chunks may be
faster for large amount of data.

Returns the answer from the device.

1.4.

API 135

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

PyVISA Documentation, Release 1.10.1

Return type list
query _delay = 0.0

query_values (message, delay=None)
Query the device for values returning an iterable of values.

The datatype expected is obtained from values_format
Parameters
* message (str)— the message to send.

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

Returns the answer from the device.
Return type list

read (termination=None, encoding=None)
Read a string from the device.

Reading stops when the device stops sending (e.g. by setting appropriate bus lines), or the termination
characters sequence was detected. Attention: Only the last character of the termination characters is really
used to stop reading, however, the whole sequence is compared to the ending of the read string message.
If they don’t match, a warning is issued.

All line-ending characters are stripped from the end of the string.
Return type str

read_ascii_values (converter="f’, separator=", ’, container=<class ’list’>)
Read values from the device in ascii format returning an iterable of values.

Parameters

* delay - delay in seconds between write and read operations. if None, defaults to
self.query_delay

e converter (callable) - function used to convert each element. Defaults to float

* separator — a callable that split the str into individual elements. If a str is given,
data.split(separator) is used.

* container — container type to use for the output data.
Type separator: (str) -> collections.Iterable[int] | str
Returns the answer from the device.
Return type list

read_binary values (datatype='f", is_big_endian=False, container=<class "list’>,
header_fmt="ieee’, expect_termination=True, data_points=0,

chunk_size=None)
Read values from the device in binary format returning an iterable of values.

Parameters
* datatype — the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess. Defaults to False.
* container — container type to use for the output data.

* header_fmt — format of the header prefixing the data. Possible values are: ‘ieee’, ‘hp’,
‘empty’

136 Chapter 1. General overview

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

PyVISA Documentation, Release 1.10.1

* expect_termination — when set to False, the expected length of the binary values
block does not account for the final termination character (the read termination)

* data_points — Number of points expected in the block. This is used only if the instru-
ment does not report it itself. This will be converted in a number of bytes based on the
datatype.

* chunk_size — Size of the chunks to read from the device. Using larger chunks may be
faster for large amount of data.

Returns the answer from the device.
Return type type(container)

read_bytes (count, chunk_size=None, break_on_termchar=False)
Read a certain number of bytes from the instrument.

Parameters
e count (int)— The number of bytes to read from the instrument.
* chunk_size (int)— The chunk size to use to perform the reading.

* break_on_termchar (bool) — Should the reading stop when a termination character
is encountered.

Return type bytes

read_raw (size=None)
Read the unmodified string sent from the instrument to the computer.

In contrast to read(), no termination characters are stripped.
Parameters size — The chunk size to use when reading the data.
Return type bytes

read_stb ()
Service request status register.

read_termination
Read termination character.

read termination_context (new_termination)

read_values (fimmt=None, container=<class ’list’>)
Read a list of floating point values from the device.

Parameters

* fmt — the format of the values. If given, it overrides the class attribute “values_format”.
Possible values are bitwise disjunctions of the above constants ascii, single, double, and
big_endian. Default is ascii.

e container — the output datatype
Returns the list of read values
Return type list
classmethod register (interface_type, resource_class)
remote_enabled

VI_ATTR_GPIB_REN_STATE returns the current state of the GPIB REN (Remote ENable) inter-
face line.

1.4.

API 137

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list

PyVISA Documentation, Release 1.10.1

VISA Attribute VI_ATTR_GPIB_REN_STATE (1073676673)

Type :class:pyvisa.constants.LineState

resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourcelInfo
resource_manufacturer_ name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_NAME (3221159938)

secondary_address
VI_ATTR_GPIB_SECONDARY_ADDR specifies the secondary address of the GPIB device used by
the given session. For the GPIB INTFC Resource, this attribute is Read-Write.
VISA Attribute VI_ATTR_GPIB_SECONDARY_ADDR (1073676659)
Type int
Range 0 <= value <= 30 or in [65535]
send_command (data)
Write GPIB command bytes on the bus.
Corresponds to viGpibCommand function of the VISA library.
Parameters data (bytes) — data tor write.
Returns Number of written bytes, return value of the library call.

Return type int, VISAStatus

138 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

send_end
VI_ATTR_SEND_END_EN specifies whether to assert END during the transfer of the last byte of
the buffer.

VISA Attribute VI_ATTR_SEND_END_EN (1073676310)
Type bool

send_ifc()
Pulse the interface clear line (IFC) for at least 100 microseconds.

Corresponds to viGpibSendIFC function of the VISA library.
Returns return value of the library call.
Return type VISAStatus

session
Resource session handle.

Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_attribute (name, state)
Sets the state of an attribute.

Parameters
¢ name — Attribute for which the state is to be modified. (Attributes.*)
* state — The state of the attribute to be set for the specified object.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode
spec_version

VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.

VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)

Type int
Range 0 <= value <=4294967295

stb
Service request status register.
timeout
The timeout in milliseconds for all resource I/O operations.
Special values:
e immediate (VI_TMO_IMMEDIATE): O (for convenience, any value smaller than 1 is considered as
0)
e infinite (VI_TMO_INFINITE): float ('+inf') (for convenience, None is considered as
float ("+inf'))
To set an infinite timeout, you can also use:
1.4. API 139

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

>>> del instrument.timeout

uninstall_handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - The user handle (ctypes object or None) returned by install_handler.

unlock ()
Relinquishes a lock for the specified resource.

values_format
visa_attributes_classes = [<class 'pyvisa.attributes.AttrVI_ATTR RM SESSION'>, <class

wait_for_srq (timeout=25000)
Wait for a serial request (SRQ) coming from the instrument.

Note that this method is not ended when another instrument signals an SRQ, only this instrument.

Parameters timeout - the maximum waiting time in milliseconds. Defaul: 25000 (millisec-
onds). None means waiting forever if necessary.

wait_on_event (in_event_type, timeout, capture_timeout=False)
Wiaits for an occurrence of the specified event in this resource.

Parameters
* in_event_type - Logical identifier of the event(s) to wait for.

* timeout — Absolute time period in time units that the resource shall wait for a specified
event to occur before returning the time elapsed error. The time unit is in milliseconds.
None means waiting forever if necessary.

* capture_timeout — When True will not produce a VisalOError(VI_ERROR_TMO)
but instead return a WaitResponse with timed_out=True

Returns A WaitResponse object that contains event_type, context and ret value.

write (message, termination=None, encoding=None)
Write a string message to the device.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3))-the message to be sent.

e termination (unicode (Py2) or str (Py3))- alternative character termina-
tion to use.

* encoding (unicode (Py2) or str (Py3))-encoding toconvertfrom unicode
to bytes.

Returns number of bytes written.

Return type int

140 Chapter 1. General overview

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

write_ascii_values (message, values, converter="f’, separator=", ’, termination=None, encod-
ing=None)
Write a string message to the device followed by values in ascii format.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3))-the message to be sent.
* values — data to be writen to the device.

* converter (callable | str)-tfunction used to convert each value. String format-
ting codes are also accepted. Defaults to ‘f’.

* separator — a callable that join the values in a single str. If a str is given, separa-
tor.join(values) is used.

Type separator: (collections.Iterable[T]) -> str | str
Returns number of bytes written.
Return type int

write_binary values (message, values, datatype="f’, is_big_endian=False, termination=None,
encoding=None, header_fmt="ieee’)
Write a string message to the device followed by values in binary format.

The write_termination is always appended to it.
Parameters
* message (unicode (Py2) or str (Py3))-the message to be sent.
* values — data to be writen to the device.
* datatype - the format string for a single element. See struct module.
* is_big_endian - boolean indicating endianess.

* header_fmt — format of the header prefixing the data. Possible values are: ‘ieee’, ‘hp’,
‘empty’

Returns number of bytes written.
Return type int

write_raw (message)
Write a byte message to the device.

Parameters message (bytes) — the message to be sent.
Returns number of bytes written.
Return type int

write_termination
Writer termination character.

write_values (message, values, termination=None, encoding=None)

class pyvisa.resources.GPIBInterface (resource_manager, resource_name)
Communicates with to devices of type GPIB::INTFC

More complex resource names can be specified with the following grammar: GPIB[board]::INTFC
Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().

address_state

1.4. API 141

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

This attribute shows whether the specified GPIB interface is currently addressed to talk or listen, or
is not addressed.

VISA Attribute VI_ATTR_GPIB_ADDR_STATE (1073676380)

Type :class:pyvisa.constants. AddressState

allow_dma

This attribute specifies whether I/0 accesses should use DMA (VI_TRUE) or Programmed 1/O
(VI_FALSE). In some implementations, this attribute may have global effects even though it is
documented to be a local attribute. Since this affects performance and not functionality, that behavior
is acceptable.

VISA Attribute VI_ATTR_DMA_ALLOW_EN (1073676318)

Type bool

atn_state

This attribute shows the current state of the GPIB ATN (ATtentioN) interface line.

VISA Attribute VI_ATTR_GPIB_ATN_STATE (1073676375)
Type :class:pyvisa.constants.LineState
before_close ()
Called just before closing an instrument.

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

control atn (mode)
Specifies the state of the ATN line and the local active controller state.

Corresponds to viGpibControl ATN function of the VISA library.

Parameters mode — Specifies the state of the ATN line and optionally the local active controller
state. (Constants.GPIB_ATN*)

Returns return value of the library call.
Return type VISAStatus

control_ren (mode)
Controls the state of the GPIB Remote Enable (REN) interface line, and optionally the remote/local state
of the device.

Corresponds to viGpibControlREN function of the VISA library.

Parameters mode — Specifies the state of the REN line and optionally the device remote/local
state. (Constants.GPIB_REN%*)

Returns return value of the library call.
Return type VISAStatus

disable_event (event_type, mechanism)
Disables notification of the specified event type(s) via the specified mechanism(s).

142 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#bool

PyVISA Documentation, Release 1.10.1

Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be disabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

discard_events (event_type, mechanism)
Discards event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism — Specifies event handling mechanisms to be dicarded. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

enable_event (event_type, mechanism, context=None)
Enable event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be enabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR)

* context — Not currently used, leave as None.

flush (mask)
Manually clears the specified buffers.

Depending on the mask this can cause the buffer data to be written to the device.

Parameters mask — Specifies the action to be taken with flushing the buffer. See high-
level.VisaLibraryBase.flush for a detailed description.

get_visa_attribute (name)
Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.
Return type unicode (Py2) or str (Py3), list or other type

group_execute_trigger (*resources)

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.
implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)
Type int
Range 0 <= value <=4294967295

1.4.

API 143

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.

Parameters
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

io_protocol

VI_ATTR_IO_PROT specifies which protocol to use. In VXI, you can choose normal word serial or
fast data channel (FDC). In GPIB, you can choose normal or high-speed (HS-488) transfers. In serial,
TCPIP, or USB RAW, you can choose normal transfers or 488.2-defined strings. In USB INSTR, you
can choose normal or vendor-specific transfers.

VISA Attribute VI_ATTR_IO_PROT (1073676316)
Type int
Range 0 <= value <= 65535

is_controller_in_charge

This attribute shows whether the specified GPIB interface is currently CIC (Controller In Charge).

VISA Attribute VI_ATTR_GPIB_CIC_STATE (1073676382)
Type bool

is_system_ controller
This attribute shows whether the specified GPIB interface is currently the system controller. In some
implementations, this attribute may be modified only through a configuration utility. On these systems
this attribute is read-only (RO).
VISA Attribute VI_ATTR_GPIB_SYS_CNTRL_STATE (1073676392)
Type bool
last_status
Last status code for this session.

Return type pyvisa.constants.StatusCode

144 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PyVISA Documentation, Release 1.10.1

lock (timeout="default’, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_context (timeout="default’, requested_key="exclusive’)
A context that locks

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — When using default of ‘exclusive’ the lock is an exclusive lock.
Otherwise it is the access key for the shared lock or None to generate a new shared access
key.

The returned context is the access_key if applicable.

lock_excl (timeout="default’)
Establish an exclusive lock to the resource.

Parameters timeout — Absolute time period (in milliseconds) that a resource waits to get
unlocked by the locking session before returning an error. (Defaults to self.timeout)

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)

Type :class:pyvisa.constants.AccessModes

ndac_state

This attribute shows the current state of the GPIB NDAC (Not Data ACcepted) interface line.

VISA Attribute VI_ATTR_GPIB_NDAC_STATE (1073676386)
Type :class:pyvisa.constants.LineState
open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.
Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (int) — If the access_mode parameter requests a lock, then this
parameter specifies the absolute time period (in milliseconds) that the resource waits to
get unlocked before this operation returns an error.

1.4.

API 145

https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

pass_control (primary_address, secondary_address)
Tell the GPIB device at the specified address to become controller in charge (CIC).

Corresponds to viGpibPassControl function of the VISA library.
Parameters

* primary_address — Primary address of the GPIB device to which you want to pass
control.

* secondary_address — Secondary address of the targeted GPIB device. If the tar-
geted device does not have a secondary address, this parameter should contain the value
Constants. NO_SEC_ADDR.

Returns return value of the library call.
Return type VISAStatus
primary_ address
VI_ATTR_GPIB_PRIMARY_ADDR specifies the primary address of the GPIB device used by the
given session. For the GPIB INTFC Resource, this attribute is Read-Write.
VISA Attribute VI_ATTR_GPIB_PRIMARY_ADDR (1073676658)
Type int

Range 0 <= value <=30

classmethod register (interface_type, resource_class)
remote_enabled
VI_ATTR_GPIB_REN_STATE returns the current state of the GPIB REN (Remote ENable) inter-
face line.
VISA Attribute VI_ATTR_GPIB_REN_STATE (1073676673)

Type :class:pyvisa.constants.LineState

resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourceInfo
resource_manufacturer_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

146 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_NAME (3221159938)

secondary_address
VI_ATTR_GPIB_SECONDARY_ADDR specifies the secondary address of the GPIB device used by
the given session. For the GPIB INTFC Resource, this attribute is Read-Write.
VISA Attribute VI_ATTR_GPIB_SECONDARY_ADDR (1073676659)
Type int
Range 0 <= value <= 30 or in [65535]
send_command (data)
Write GPIB command bytes on the bus.
Corresponds to viGpibCommand function of the VISA library.
Parameters data (bytes) — data tor write.
Returns Number of written bytes, return value of the library call.
Return type int, VISAStatus
send_end
VI_ATTR_SEND_END_EN specifies whether to assert END during the transfer of the last byte of
the buffer.
VISA Attribute VI_ATTR_SEND_END_EN (1073676310)
Type bool
send_ifc()
Pulse the interface clear line (IFC) for at least 100 microseconds.
Corresponds to viGpibSendIFC function of the VISA library.
Returns return value of the library call.
Return type VISAStatus

session
Resource session handle.

Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_attribute (name, state)
Sets the state of an attribute.

Parameters

¢ name — Attribute for which the state is to be modified. (Attributes.*)

1.4.

API 147

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PyVISA Documentation, Release 1.10.1

* state — The state of the attribute to be set for the specified object.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode
spec_version
VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.
VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)
Type int
Range 0 <= value <= 4294967295
timeout
The timeout in milliseconds for all resource I/O operations.

Special values:

¢ immediate (VI_TMO_IMMEDIATE): O (for convenience, any value smaller than 1 is considered as
0)

e infinite (VI_TMO_INFINITE): float ('+inf') (for convenience, None is considered as
float ("+inf'))

To set an infinite timeout, you can also use:

>>> del instrument.timeout

uninstall_handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - The user handle (ctypes object or None) returned by install_handler.

unlock ()
Relinquishes a lock for the specified resource.

visa_attributes_classes = [<class 'pyvisa.attributes.AttrVI_ATTR_RM SESSION'>, <class

wait_on_event (in_event_type, timeout, capture_timeout=False)
Wiaits for an occurrence of the specified event in this resource.

Parameters
* in_event_type — Logical identifier of the event(s) to wait for.

* timeout — Absolute time period in time units that the resource shall wait for a specified
event to occur before returning the time elapsed error. The time unit is in milliseconds.
None means waiting forever if necessary.

* capture_timeout — When True will not produce a VisalOError(VI_ERROR_TMO)
but instead return a WaitResponse with timed_out=True

148 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

Returns A WaitResponse object that contains event_type, context and ret value.

class pyvisa.resources.FirewireInstrument (resource_manager, resource_name)
Communicates with to devices of type VXI::VXI logical address[::INSTR]

More complex resource names can be specified with the following grammar: VXI[board]::VXI logical ad-
dress[::INSTR]

Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().

before_close ()
Called just before closing an instrument.

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

disable_event (event_type, mechanism)
Disables notification of the specified event type(s) via the specified mechanism(s).

Parameters
e event_type — Logical event identifier.

* mechanism — Specifies event handling mechanisms to be disabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

discard_events (event_type, mechanism)
Discards event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism — Specifies event handling mechanisms to be dicarded. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

enable_event (event_type, mechanism, context=None)
Enable event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be enabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR)

* context — Not currently used, leave as None.

get_visa_attribute (name)
Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.
Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.

implementation_version

1.4. API 149

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PyVISA Documentation, Release 1.10.1

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)
Type int
Range 0 <= value <= 4294967295
install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.
Parameters

* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

last_status
Last status code for this session.

Return type pyvisa.constants.StatusCode

lock (timeout="default’, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_context (timeout="default’, requested_key="exclusive’)
A context that locks

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

150

Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

* requested_key — When using default of ‘exclusive’ the lock is an exclusive lock.
Otherwise it is the access key for the shared lock or None to generate a new shared access

key.
The returned context is the access_key if applicable.

lock_excl (timeout="default’)
Establish an exclusive lock to the resource.

Parameters timeout — Absolute time period (in milliseconds) that a resource waits to get
unlocked by the locking session before returning an error. (Defaults to self.timeout)

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)
Type :class:pyvisa.constants.AccessModes
move_in (space, offset, length, width, extended=False)
Moves a block of data to local memory from the specified address space and offset.
Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

¢ length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* width — Number of bits to read per element.
* extended - Use 64 bits offset independent of the platform.

move_out (space, offset, length, data, width, extended=False)
Moves a block of data from local memory to the specified address space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

* length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* data — Data to write to bus.
e width — Number of bits to read per element.
* extended — Use 64 bits offset independent of the platform.

open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.

Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (int) — If the access_mode parameter requests a lock, then this
parameter specifies the absolute time period (in milliseconds) that the resource waits to
get unlocked before this operation returns an error.

1.4.

API 151

https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

read_memory (space, offset, width, extended=False)
Reads in an 8-bit, 16-bit, 32-bit, or 64-bit value from the specified memory space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* width — Number of bits to read.
* extended - Use 64 bits offset independent of the platform.
Returns Data read from memory.
Corresponds to viln* functions of the visa library.
classmethod register (interface_type, resource_class)
resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourcelInfo
resource_manufacturer_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.
VISA Attribute VI_ATTR_RSRC_NAME (3221159938)
session
Resource session handle.
Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_attribute (name, state)
Sets the state of an attribute.

Parameters

152 Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

¢ name — Attribute for which the state is to be modified. (Attributes.*)
* state — The state of the attribute to be set for the specified object.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode
spec_version

VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.

VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)
Type int
Range 0 <= value <= 4294967295
timeout
The timeout in milliseconds for all resource I/O operations.

Special values:

e immediate (VI_TMO_IMMEDIATE): O (for convenience, any value smaller than 1 is considered as
0)

e infinite (VI_TMO_INFINITE): float ('+inf"') (for convenience, None is considered as
float ('+inf'))

To set an infinite timeout, you can also use:

>>> del instrument.timeout

uninstall_handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle — The user handle (ctypes object or None) returned by install_handler.

unlock ()
Relinquishes a lock for the specified resource.

visa_ attributes_classes = [<class 'pyvisa.attributes.AttrVI_ATTR RM SESSION'>, <class

wait_on_event (in_event_type, timeout, capture_timeout="False)
Waits for an occurrence of the specified event in this resource.

Parameters
* in_event_type - Logical identifier of the event(s) to wait for.

* timeout — Absolute time period in time units that the resource shall wait for a specified
event to occur before returning the time elapsed error. The time unit is in milliseconds.
None means waiting forever if necessary.

1.4.

API 153

https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

* capture_timeout — When True will not produce a VisalOError(VI_ERROR_TMO)
but instead return a WaitResponse with timed_out=True

Returns A WaitResponse object that contains event_type, context and ret value.

write_memory (space, offset, data, width, extended=False)
Write in an 8-bit, 16-bit, 32-bit, value to the specified memory space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* data — Data to write to bus.
* width — Number of bits to read.

* extended - Use 64 bits offset independent of the platform.

Corresponds to viOut* functions of the visa library.

class pyvisa.resources.PXIInstrument (resource_manager, resource_name)
Communicates with to devices of type PXI::<device>[::INSTR]

More complex resource names can be specified with the following grammar:
PXI[bus]::device[::function][::INSTR]

or: PXI[interface]::bus-device[.function][::INSTR]
or: PXI[interface]::CHASSISchassis number::SLOTslot number[::FUNCfunction][::INSTR]

Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().

allow _dma
This attribute specifies whether I/O accesses should use DMA (VI_TRUE) or Programmed 1/O

(VI_FALSE). In some implementations, this attribute may have global effects even though it is
documented to be a local attribute. Since this affects performance and not functionality, that behavior
is acceptable.

VISA Attribute VI_ATTR_DMA_ALLOW_EN (1073676318)
Type bool

before_ close ()
Called just before closing an instrument.

clear ()

Clears this resource

close ()

Closes the VISA session and marks the handle as invalid.

destination_increment

VI_ATTR_DEST_INCREMENT is used in the viMoveOutXX() operations to specify by how many

elements the destination offset is to be incremented after every transfer. The default value of this
attribute is 1 (that is, the destination address will be incremented by 1 after each transfer), and the
viMoveOutXX() operations move into consecutive elements. If this attribute is set to 0, the viMove-
OutXX() operations will always write to the same element, essentially treating the destination as a
FIFO register.

VISA Attribute VI_ATTR_DEST_INCREMENT (1073676353)

154

Chapter 1. General overview

https://docs.python.org/3/library/functions.html#bool

PyVISA Documentation, Release 1.10.1

Type int
Range 0 <= value <=1
disable_event (event_type, mechanism)
Disables notification of the specified event type(s) via the specified mechanism(s).
Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be disabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

discard_events (event_type, mechanism)
Discards event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism — Specifies event handling mechanisms to be dicarded. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

enable_event (event_type, mechanism, context=None)
Enable event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be enabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR)

* context — Not currently used, leave as None.

get_visa_attribute (name)
Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.
Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.
implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)

Type int
Range 0 <= value <= 4294967295

1.4.

API 155

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.

Parameters
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

last_status
Last status code for this session.

Return type pyvisa.constants.StatusCode

lock (timeout="default’, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_context (timeout="default’, requested_key="exclusive’)
A context that locks

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — When using default of ‘exclusive’ the lock is an exclusive lock.
Otherwise it is the access key for the shared lock or None to generate a new shared access
key.

The returned context is the access_key if applicable.

lock_excl (timeout="default’)
Establish an exclusive lock to the resource.

Parameters timeout — Absolute time period (in milliseconds) that a resource waits to get
unlocked by the locking session before returning an error. (Defaults to self.timeout)

156 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)

Type :class:pyvisa.constants.AccessModes

manufacturer_id

VI_ATTR_MANF_ID is the manufacturer identification number of the device.

VISA Attribute VI_ATTR_MANF_ID (1073676505)
Type int
Range 0 <= value <= 65535
manufacturer_name
This string attribute is the manufacturer name.
VISA Attribute VI_ATTR_MANF_NAME (3221160050)

model_ code
VI_ATTR_MODEL_CODE specifies the model code for the device.

VISA Attribute VI_ATTR_MODEL_CODE (1073676511)
Type int
Range 0 <= value <= 65535

model name
This string attribute is the model name of the device.

VISA Attribute VI_ATTR_MODEL_NAME (3221160055)

move_in (space, offset, length, width, extended=False)
Moves a block of data to local memory from the specified address space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

* length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* width — Number of bits to read per element.
* extended — Use 64 bits offset independent of the platform.

move_out (space, offset, length, data, width, extended=False)
Moves a block of data from local memory to the specified address space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

* length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

1.4.

API 157

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

* data — Data to write to bus.
* width — Number of bits to read per element.
* extended - Use 64 bits offset independent of the platform.

open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.

Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (int) — If the access_mode parameter requests a lock, then this
parameter specifies the absolute time period (in milliseconds) that the resource waits to
get unlocked before this operation returns an error.

read_memory (space, offset, width, extended=False)
Reads in an 8-bit, 16-bit, 32-bit, or 64-bit value from the specified memory space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
e width — Number of bits to read.
* extended — Use 64 bits offset independent of the platform.
Returns Data read from memory.
Corresponds to viln* functions of the visa library.
classmethod register (interface_type, resource_class)
resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourcelInfo
resource_manufacturer_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

158 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.
VISA Attribute VI_ATTR_RSRC_NAME (3221159938)
session
Resource session handle.
Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_attribute (name, state)
Sets the state of an attribute.

Parameters
¢ name — Attribute for which the state is to be modified. (Attributes.*)
» state — The state of the attribute to be set for the specified object.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode
source_increment

VI_ATTR_SRC_INCREMENT is used in the viMoveInXX() operations to specify by how many ele-
ments the source offset is to be incremented after every transfer. The default value of this attribute
is 1 (that is, the source address will be incremented by 1 after each transfer), and the viMoveInXX()
operations move from consecutive elements. If this attribute is set to 0, the viMoveInXX() operations
will always read from the same element, essentially treating the source as a FIFO register.

VISA Attribute VI_ATTR_SRC_INCREMENT (1073676352)
Type int

Range 0 <= value <=1

spec_version

VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.

VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)
Type int
Range 0 <= value <=4294967295
timeout
The timeout in milliseconds for all resource I/O operations.
Special values:

¢ immediate (VI_TMO_IMMEDIATE): O (for convenience, any value smaller than 1 is considered as
0)

1.4.

API 159

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

e infinite (VI_TMO_INFINITE): float ('+inf"') (for convenience, None is considered as
float ("+inf'))

To set an infinite timeout, you can also use:

>>> del instrument.timeout

uninstall_ handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - The user handle (ctypes object or None) returned by install_handler.

unlock ()
Relinquishes a lock for the specified resource.

visa_attributes_classes = [<class 'pyvisa.attributes.AttrVI_ATTR RM SESSION'>, <class

wait_on_event (in_event_type, timeout, capture_timeout=False)
Waits for an occurrence of the specified event in this resource.

Parameters
* in_event_type — Logical identifier of the event(s) to wait for.

* timeout — Absolute time period in time units that the resource shall wait for a specified
event to occur before returning the time elapsed error. The time unit is in milliseconds.
None means waiting forever if necessary.

* capture_timeout — When True will not produce a VisalOError(VI_ERROR_TMO)
but instead return a WaitResponse with timed_out=True

Returns A WaitResponse object that contains event_type, context and ret value.

write_memory (space, offset, data, width, extended=False)
Write in an 8-bit, 16-bit, 32-bit, value to the specified memory space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
» offset — Offset (in bytes) of the address or register from which to read.
* data — Data to write to bus.
* width — Number of bits to read.
* extended — Use 64 bits offset independent of the platform.
Corresponds to viOut* functions of the visa library.

class pyvisa.resources.PXIMemory (resource_manager, resource_name)
Communicates with to devices of type PXI[interface]::MEMACC

Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().

before_close ()
Called just before closing an instrument.

clear ()
Clears this resource

160 Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

close ()
Closes the VISA session and marks the handle as invalid.

destination_increment

VI_ATTR_DEST_INCREMENT is used in the viMoveOutXX() operations to specify by how many
elements the destination offset is to be incremented after every transfer. The default value of this
attribute is 1 (that is, the destination address will be incremented by 1 after each transfer), and the
viMoveOutXX() operations move into consecutive elements. If this attribute is set to 0, the viMove-

OutXX() operations will always write to the same element, essentially treating the destination as a
FIFO register.

VISA Attribute VI_ATTR_DEST_INCREMENT (1073676353)
Type int
Range 0 <= value <=1
disable_event (event_type, mechanism)
Disables notification of the specified event type(s) via the specified mechanism(s).
Parameters
* event_type — Logical event identifier.

* mechanism — Specifies event handling mechanisms to be disabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

discard_events (event_type, mechanism)
Discards event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be dicarded. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

enable_event (event_type, mechanism, context=None)
Enable event occurrences for specified event types and mechanisms in this resource.

Parameters
e event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be enabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR)

* context — Not currently used, leave as None.

get_visa_attribute (name)
Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.
Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.

implementation_version

1.4.

API 161

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PyVISA Documentation, Release 1.10.1

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)
Type int
Range 0 <= value <= 4294967295
install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.
Parameters

* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

last_status
Last status code for this session.

Return type pyvisa.constants.StatusCode

lock (timeout="default’, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_context (timeout="default’, requested_key="exclusive’)
A context that locks

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

162

Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

* requested_key — When using default of ‘exclusive’ the lock is an exclusive lock.
Otherwise it is the access key for the shared lock or None to generate a new shared access

key.
The returned context is the access_key if applicable.

lock_excl (timeout="default’)
Establish an exclusive lock to the resource.

Parameters timeout — Absolute time period (in milliseconds) that a resource waits to get
unlocked by the locking session before returning an error. (Defaults to self.timeout)

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)
Type :class:pyvisa.constants.AccessModes
move_in (space, offset, length, width, extended=False)
Moves a block of data to local memory from the specified address space and offset.
Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

¢ length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* width — Number of bits to read per element.
* extended - Use 64 bits offset independent of the platform.

move_out (space, offset, length, data, width, extended=False)
Moves a block of data from local memory to the specified address space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

* length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* data — Data to write to bus.
e width — Number of bits to read per element.
* extended — Use 64 bits offset independent of the platform.

open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.

Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (int) — If the access_mode parameter requests a lock, then this
parameter specifies the absolute time period (in milliseconds) that the resource waits to
get unlocked before this operation returns an error.

1.4.

API 163

https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

read_memory (space, offset, width, extended=False)
Reads in an 8-bit, 16-bit, 32-bit, or 64-bit value from the specified memory space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* width — Number of bits to read.
* extended - Use 64 bits offset independent of the platform.
Returns Data read from memory.
Corresponds to viln* functions of the visa library.
classmethod register (interface_type, resource_class)
resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourcelInfo
resource_manufacturer_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.
VISA Attribute VI_ATTR_RSRC_NAME (3221159938)
session
Resource session handle.
Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_attribute (name, state)
Sets the state of an attribute.

Parameters

164 Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

¢ name — Attribute for which the state is to be modified. (Attributes.*)
* state — The state of the attribute to be set for the specified object.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode
source_increment

VI_ATTR_SRC_INCREMENT is used in the viMoveInXX() operations to specify by how many ele-
ments the source offset is to be incremented after every transfer. The default value of this attribute
is 1 (that is, the source address will be incremented by 1 after each transfer), and the viMoveInXX()
operations move from consecutive elements. If this attribute is set to 0, the viMoveInXX() operations
will always read from the same element, essentially treating the source as a FIFO register.

VISA Attribute VI_ATTR_SRC_INCREMENT (1073676352)
Type int

Range 0 <= value <=1

spec_version

VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.

VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)
Type int
Range 0 <= value <=4294967295
timeout
The timeout in milliseconds for all resource I/O operations.
Special values:

¢ immediate (VI_TMO_IMMEDIATE): O (for convenience, any value smaller than 1 is considered as
0)

e infinite (VI_TMO_INFINITE): float ('+inf"') (for convenience, None is considered as
float ("+inf'))

To set an infinite timeout, you can also use:

>>> del instrument.timeout

uninstall_ handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - The user handle (ctypes object or None) returned by install_handler.

1.4.

API 165

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

unlock ()
Relinquishes a lock for the specified resource.

visa_ attributes_classes = [<class 'pyvisa.attributes.AttrVI_ATTR RM SESSION'>,

wait_on_event (in_event_type, timeout, capture_timeout=False)
Waits for an occurrence of the specified event in this resource.

Parameters
* in_event_type - Logical identifier of the event(s) to wait for.

* timeout — Absolute time period in time units that the resource shall wait for a specified
event to occur before returning the time elapsed error. The time unit is in milliseconds.
None means waiting forever if necessary.

* capture_timeout — When True will not produce a VisalOError(VI_ERROR_TMO)
but instead return a WaitResponse with timed_out=True

Returns A WaitResponse object that contains event_type, context and ret value.

write_memory (space, offset, data, width, extended=False)
Write in an 8-bit, 16-bit, 32-bit, value to the specified memory space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* data — Data to write to bus.
e width — Number of bits to read.
* extended — Use 64 bits offset independent of the platform.
Corresponds to viOut* functions of the visa library.

class pyvisa.resources.VXIInstrument (resource_manager, resource_name)
Communicates with to devices of type VXI::VXI logical address[::INSTR]

More complex resource names can be specified with the following grammar: VXI[board]::VXI logical ad-
dress[::INSTR]

Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().
allow dma

This attribute specifies whether I/0 accesses should use DMA (VI_TRUE) or Programmed I/O
(VI_FALSE). In some implementations, this attribute may have global effects even though it is
documented to be a local attribute. Since this affects performance and not functionality, that behavior
is acceptable.

VISA Attribute VI_ATTR_DMA_ALLOW_EN (1073676318)
Type bool

before_close ()
Called just before closing an instrument.

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

166 Chapter 1. General overview

<class

https://docs.python.org/3/library/functions.html#bool

PyVISA Documentation, Release 1.10.1

destination_increment

VI_ATTR_DEST_INCREMENT is used in the viMoveOutXX() operations to specify by how many
elements the destination offset is to be incremented after every transfer. The default value of this
attribute is 1 (that is, the destination address will be incremented by 1 after each transfer), and the
viMoveOutXX() operations move into consecutive elements. If this attribute is set to 0, the viMove-

OutXX() operations will always write to the same element, essentially treating the destination as a
FIFO register.

VISA Attribute VI_ATTR_DEST_INCREMENT (1073676353)
Type int
Range 0 <= value <=1
disable_event (event_type, mechanism)
Disables notification of the specified event type(s) via the specified mechanism(s).
Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be disabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

discard_events (event_type, mechanism)
Discards event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism — Specifies event handling mechanisms to be dicarded. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

enable_event (event_type, mechanism, context=None)
Enable event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be enabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR)

* context — Not currently used, leave as None.

get_visa_attribute (name)
Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.
Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.

implementation_version

1.4.

API 167

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PyVISA Documentation, Release 1.10.1

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)
Type int
Range 0 <= value <= 4294967295
install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.
Parameters

* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

io_protocol

VI_ATTR_IO_PROT specifies which protocol to use. In VXI, you can choose normal word serial or
fast data channel (FDC). In GPIB, you can choose normal or high-speed (HS-488) transfers. In serial,
TCPIP, or USB RAW, you can choose normal transfers or 488.2-defined strings. In USB INSTR, you
can choose normal or vendor-specific transfers.

VISA Attribute VI_ATTR_IO_PROT (1073676316)
Type int
Range 0 <= value <= 65535

is_4882_ compliant
VI_ATTR _4882_COMPLIANT specifies whether the device is 488.2 compliant.

VISA Attribute VI_ATTR_4882_COMPLIANT (1073676703)
Type bool

last_status
Last status code for this session.

168

Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PyVISA Documentation, Release 1.10.1

Return type pyvisa.constants.StatusCode

lock (timeout="default’, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_context (timeout="default’, requested_key="exclusive’)
A context that locks

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — When using default of ‘exclusive’ the lock is an exclusive lock.
Otherwise it is the access key for the shared lock or None to generate a new shared access
key.

The returned context is the access_key if applicable.

lock_excl (timeout="default’)
Establish an exclusive lock to the resource.

Parameters timeout — Absolute time period (in milliseconds) that a resource waits to get
unlocked by the locking session before returning an error. (Defaults to self.timeout)

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)

Type :class:pyvisa.constants. AccessModes

manufacturer id

VI ATTR_MANF_ID is the manufacturer identification number of the device.

VISA Attribute VI_ATTR_MANF_ID (1073676505)
Type int
Range 0 <= value <= 65535
manufacturer_name
This string attribute is the manufacturer name.
VISA Attribute VI_ATTR_MANF_NAME (3221160050)

model_code
VI_ATTR_MODEL_CODE specifies the model code for the device.

VISA Attribute VI_ATTR_MODEL_CODE (1073676511)

1.4.

API 169

https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

Type int
Range 0 <= value <= 65535

model_ name
This string attribute is the model name of the device.

VISA Attribute VI_ATTR_MODEL_NAME (3221160055)

open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.

Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (int) — If the access_mode parameter requests a lock, then this
parameter specifies the absolute time period (in milliseconds) that the resource waits to
get unlocked before this operation returns an error.

classmethod register (interface_type, resource_class)
resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourcelInfo
resource_manufacturer_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_NAME (3221159938)

send_end

VI_ATTR_SEND_END_EN specifies whether to assert END during the transfer of the last byte of
the buffer.

170 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

VISA Attribute VI_ATTR_SEND_END_EN (1073676310)
Type bool

session
Resource session handle.

Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_attribute (name, state)
Sets the state of an attribute.

Parameters
¢ name — Attribute for which the state is to be modified. (Attributes.*)
* state — The state of the attribute to be set for the specified object.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode
source_increment

VI_ATTR_SRC_INCREMENT is used in the viMoveInXX() operations to specify by how many ele-
ments the source offset is to be incremented after every transfer. The default value of this attribute
is 1 (that is, the source address will be incremented by 1 after each transfer), and the viMoveInXX()
operations move from consecutive elements. If this attribute is set to 0, the viMoveInXX() operations
will always read from the same element, essentially treating the source as a FIFO register.

VISA Attribute VI_ATTR_SRC_INCREMENT (1073676352)
Type int

Range 0 <= value <=1

spec_version

VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.

VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)
Type int
Range 0 <= value <=4294967295
timeout
The timeout in milliseconds for all resource I/O operations.
Special values:

¢ immediate (VI_TMO_IMMEDIATE): O (for convenience, any value smaller than 1 is considered as
0)

e infinite (VI_TMO_INFINITE): float ('+inf"') (for convenience, None is considered as
float ("+inf'))

To set an infinite timeout, you can also use:

1.4.

API 171

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

>>> del instrument.timeout

uninstall_handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - The user handle (ctypes object or None) returned by install_handler.

unlock ()
Relinquishes a lock for the specified resource.

visa_ attributes_classes = [<class 'pyvisa.attributes.AttrVI_ATTR RM SESSION'>, <class

wait_on_event (in_event_type, timeout, capture_timeout=False)
Waits for an occurrence of the specified event in this resource.

Parameters
* in event_type - Logical identifier of the event(s) to wait for.

* timeout — Absolute time period in time units that the resource shall wait for a specified
event to occur before returning the time elapsed error. The time unit is in milliseconds.
None means waiting forever if necessary.

* capture_timeout — When True will not produce a VisalOError(VI_ERROR_TMO)
but instead return a WaitResponse with timed_out=True

Returns A WaitResponse object that contains event_type, context and ret value.

class pyvisa.resources.VXIMemory (resource_manager, resource_name)
Communicates with to devices of type VXI[board]:: MEMACC

More complex resource names can be specified with the following grammar: VXI[board]::MEMACC
Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().
allow_dma
This attribute specifies whether I/0 accesses should use DMA (VI_TRUE) or Programmed I/O
(VI_FALSE). In some implementations, this attribute may have global effects even though it is
documented to be a local attribute. Since this affects performance and not functionality, that behavior
is acceptable.
VISA Attribute VI_ATTR_DMA_ALLOW_EN (1073676318)
Type bool
before_close ()

Called just before closing an instrument.

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

destination_increment

172 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#bool

PyVISA Documentation, Release 1.10.1

VI_ATTR_DEST_INCREMENT is used in the viMoveOutXX() operations to specify by how many
elements the destination offset is to be incremented after every transfer. The default value of this
attribute is 1 (that is, the destination address will be incremented by 1 after each transfer), and the
viMoveOutXX() operations move into consecutive elements. If this attribute is set to 0, the viMove-
OutXX() operations will always write to the same element, essentially treating the destination as a
FIFO register.

VISA Attribute VI_ATTR_DEST_INCREMENT (1073676353)
Type int
Range 0 <= value <=1

disable_event (event_type, mechanism)

Disables notification of the specified event type(s) via the specified mechanism(s).
Parameters

* event_type — Logical event identifier.

* mechanism — Specifies event handling mechanisms to be disabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

discard_events (event_type, mechanism)
Discards event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism — Specifies event handling mechanisms to be dicarded. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

enable_event (event_type, mechanism, context=None)
Enable event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be enabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR)

* context — Not currently used, leave as None.

get_visa_attribute (name)
Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.
Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.
implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as

1.4.

API 173

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PyVISA Documentation, Release 1.10.1

the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)

Type int
Range 0 <= value <= 4294967295
install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.
Parameters
* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle - A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)
Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

last_status
Last status code for this session.

Return type pyvisa.constants.StatusCode

lock (timeout="default’, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_context (timeout="default’, requested_key="exclusive’)
A context that locks

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

174

Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

* requested_key — When using default of ‘exclusive’ the lock is an exclusive lock.
Otherwise it is the access key for the shared lock or None to generate a new shared access

key.
The returned context is the access_key if applicable.

lock_excl (timeout="default’)
Establish an exclusive lock to the resource.

Parameters timeout — Absolute time period (in milliseconds) that a resource waits to get
unlocked by the locking session before returning an error. (Defaults to self.timeout)

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)
Type :class:pyvisa.constants.AccessModes
move_in (space, offset, length, width, extended=False)
Moves a block of data to local memory from the specified address space and offset.
Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

¢ length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* width — Number of bits to read per element.
* extended - Use 64 bits offset independent of the platform.

move_out (space, offset, length, data, width, extended=False)
Moves a block of data from local memory to the specified address space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.

* length - Number of elements to transfer, where the data width of the elements to transfer
is identical to the source data width.

* data — Data to write to bus.
e width — Number of bits to read per element.
* extended — Use 64 bits offset independent of the platform.

open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.

Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

* open_timeout (int) — If the access_mode parameter requests a lock, then this
parameter specifies the absolute time period (in milliseconds) that the resource waits to
get unlocked before this operation returns an error.

1.4.

API 175

https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

read_memory (space, offset, width, extended=False)
Reads in an 8-bit, 16-bit, 32-bit, or 64-bit value from the specified memory space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* width — Number of bits to read.
* extended - Use 64 bits offset independent of the platform.
Returns Data read from memory.
Corresponds to viln* functions of the visa library.
classmethod register (interface_type, resource_class)
resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourcelInfo
resource_manufacturer_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.
VISA Attribute VI_ATTR_RSRC_NAME (3221159938)
session
Resource session handle.
Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_attribute (name, state)
Sets the state of an attribute.

Parameters

176 Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

¢ name — Attribute for which the state is to be modified. (Attributes.*)
* state — The state of the attribute to be set for the specified object.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode
source_increment

VI_ATTR_SRC_INCREMENT is used in the viMoveInXX() operations to specify by how many ele-
ments the source offset is to be incremented after every transfer. The default value of this attribute
is 1 (that is, the source address will be incremented by 1 after each transfer), and the viMoveInXX()
operations move from consecutive elements. If this attribute is set to 0, the viMoveInXX() operations
will always read from the same element, essentially treating the source as a FIFO register.

VISA Attribute VI_ATTR_SRC_INCREMENT (1073676352)
Type int

Range 0 <= value <=1

spec_version

VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.

VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)
Type int
Range 0 <= value <=4294967295
timeout
The timeout in milliseconds for all resource I/O operations.
Special values:

¢ immediate (VI_TMO_IMMEDIATE): O (for convenience, any value smaller than 1 is considered as
0)

e infinite (VI_TMO_INFINITE): float ('+inf"') (for convenience, None is considered as
float ("+inf'))

To set an infinite timeout, you can also use:

>>> del instrument.timeout

uninstall_ handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - The user handle (ctypes object or None) returned by install_handler.

1.4.

API 177

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

unlock ()
Relinquishes a lock for the specified resource.

visa_ attributes_classes = [<class 'pyvisa.attributes.AttrVI_ATTR RM SESSION'>,

wait_on_event (in_event_type, timeout, capture_timeout=False)
Waits for an occurrence of the specified event in this resource.

Parameters
* in_event_type - Logical identifier of the event(s) to wait for.

* timeout — Absolute time period in time units that the resource shall wait for a specified
event to occur before returning the time elapsed error. The time unit is in milliseconds.
None means waiting forever if necessary.

* capture_timeout — When True will not produce a VisalOError(VI_ERROR_TMO)
but instead return a WaitResponse with timed_out=True

Returns A WaitResponse object that contains event_type, context and ret value.

write_memory (space, offset, data, width, extended=False)
Write in an 8-bit, 16-bit, 32-bit, value to the specified memory space and offset.

Parameters
* space — Specifies the address space. (Constants.*SPACE*)
* offset — Offset (in bytes) of the address or register from which to read.
* data — Data to write to bus.
e width — Number of bits to read.
* extended — Use 64 bits offset independent of the platform.
Corresponds to viOut* functions of the visa library.

class pyvisa.resources.VXIBackplane (resource_manager, resource_name)
Communicates with to devices of type VXI::BACKPLANE

More complex resource names can be specified with the following grammar: VXlI[board][::VXI logical
address]::BACKPLANE

Do not instantiate directly, use pyvisa.highlevel.ResourceManager.open_resource ().

before_ close ()
Called just before closing an instrument.

clear ()
Clears this resource

close ()
Closes the VISA session and marks the handle as invalid.

disable_event (event_type, mechanism)
Disables notification of the specified event type(s) via the specified mechanism(s).

Parameters
* event_type — Logical event identifier.

* mechanism — Specifies event handling mechanisms to be disabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

discard_events (event_type, mechanism)
Discards event occurrences for specified event types and mechanisms in this resource.

178 Chapter 1. General overview

<class

PyVISA Documentation, Release 1.10.1

Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be dicarded. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR, .VI_ALL_MECH)

enable_event (event_type, mechanism, context=None)
Enable event occurrences for specified event types and mechanisms in this resource.

Parameters
* event_type — Logical event identifier.

* mechanism - Specifies event handling mechanisms to be enabled. (Con-
stants.VI_QUEUE, .VI_HNDLR, .VI_SUSPEND_HNDLR)

* context — Not currently used, leave as None.

get_visa_attribute (name)
Retrieves the state of an attribute in this resource.

Parameters name — Resource attribute for which the state query is made (see Attributes.*)
Returns The state of the queried attribute for a specified resource.
Return type unicode (Py2) or str (Py3), list or other type

ignore_warning (*warnings_constants)
Ignoring warnings context manager for the current resource.

Parameters warnings_constants — constants identifying the warnings to ignore.
implementation_version

VI_ATTR_RSRC_IMPL_VERSION is the resource version that uniquely identifies each of the dif-
ferent revisions or implementations of a resource. This attribute value is defined by the individual
manufacturer and increments with each new revision. The format of the value has the upper 12 bits as
the major number of the version, the next lower 12 bits as the minor number of the version, and the
lowest 8 bits as the sub-minor number of the version.

VISA Attribute VI_ATTR_RSRC_IMPL_VERSION (1073676291)
Type int
Range 0 <= value <= 4294967295
install_handler (event_type, handler, user_handle=None)
Installs handlers for event callbacks in this resource.
Parameters

* event_type — Logical event identifier.

* handler - Interpreted as a valid reference to a handler to be installed by a client appli-
cation.

* user_handle — A value specified by an application that can be used for identifying
handlers uniquely for an event type.

Returns user handle (a ctypes object)

interface_number
VI_ATTR_INTF_NUM specifies the board number for the given interface.

VISA Attribute VI_ATTR_INTF_NUM (1073676662)

1.4.

API 179

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

Type int
Range 0 <= value <= 65535

interface_type
The interface type of the resource as a number.

last_status
Last status code for this session.

Return type pyvisa.constants.StatusCode

lock (timeout="default’, requested_key=None)
Establish a shared lock to the resource.

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — Access key used by another session with which you want your ses-
sion to share a lock or None to generate a new shared access key.

Returns A new shared access key if requested_key is None, otherwise, same value as the re-
quested_key

lock_context (timeout="default’, requested_key="exclusive’)
A context that locks

Parameters

* timeout — Absolute time period (in milliseconds) that a resource waits to get unlocked
by the locking session before returning an error. (Defaults to self.timeout)

* requested_key — When using default of ‘exclusive’ the lock is an exclusive lock.
Otherwise it is the access key for the shared lock or None to generate a new shared access
key.

The returned context is the access_key if applicable.

lock_excl (timeout="default’)
Establish an exclusive lock to the resource.

Parameters timeout — Absolute time period (in milliseconds) that a resource waits to get
unlocked by the locking session before returning an error. (Defaults to self.timeout)

lock_state
VI_ATTR_RSRC_LOCK_STATE indicates the current locking state of the resource. The resource
can be unlocked, locked with an exclusive lock, or locked with a shared lock.
VISA Attribute VI_ATTR_RSRC_LOCK_STATE (1073676292)
Type :class:pyvisa.constants.AccessModes
open (access_mode=<AccessModes.no_lock: 0>, open_timeout=5000)
Opens a session to the specified resource.
Parameters

* access_mode (pyvisa.constants.AccessModes) — Specifies the mode by
which the resource is to be accessed.

180 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

* open_timeout (int) — If the access_mode parameter requests a lock, then this
parameter specifies the absolute time period (in milliseconds) that the resource waits to
get unlocked before this operation returns an error.

classmethod register (interface_type, resource_class)
resource_class
VI_ATTR_RSRC_CLASS specifies the resource class (for example, “INSTR”) as defined by the
canonical resource name.
VISA Attribute VI_ATTR_RSRC_CLASS (3221159937)
resource_info
Get the extended information of this resource.
Parameters resource_name — Unique symbolic name of a resource.
Return type pyvisa.highlevel.ResourceInfo
resource_manufacturer_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.

VISA Attribute VI_ATTR_RSRC_MANF_NAME (3221160308)

resource_name

VI_ATTR_RSRC_MANF_NAME is a string that corresponds to the manufacturer name of the
vendor that implemented the VISA library. This attribute is not related to the device manufacturer
attributes.

Note The value of this attribute is for display purposes only and not for programmatic decisions, as
the value can differ between VISA implementations and/or revisions.
VISA Attribute VI_ATTR_RSRC_NAME (3221159938)
session
Resource session handle.
Raises pyvisa.errors.InvalidSession if session is closed.

set_visa_attribute (name, state)
Sets the state of an attribute.

Parameters
¢ name — Attribute for which the state is to be modified. (Attributes.*)
* state - The state of the attribute to be set for the specified object.
Returns return value of the library call.
Return type pyvisa.constants.StatusCode

spec_version

1.4.

API 181

https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

VI_ATTR_RSRC_SPEC_VERSION is the resource version that uniquely identifies the version of
the VISA specification to which the implementation is compliant. The format of the value has the
upper 12 bits as the major number of the version, the next lower 12 bits as the minor number of the
version, and the lowest 8 bits as the sub-minor number of the version. The current VISA specification
defines the value to be 00300000h.

VISA Attribute VI_ATTR_RSRC_SPEC_VERSION (1073676656)
Type int
Range 0 <= value <= 4294967295
timeout
The timeout in milliseconds for all resource I/O operations.

Special values:

¢ immediate (VI_TMO_IMMEDIATE): O (for convenience, any value smaller than 1 is considered as
0)

e infinite (VI_TMO_INFINITE): float ('+inf"') (for convenience, None is considered as
float ("+inf'))

To set an infinite timeout, you can also use:

>>> del instrument.timeout

uninstall_ handler (event_type, handler, user_handle=None)
Uninstalls handlers for events in this resource.

Parameters
* event_type — Logical event identifier.

* handler — Interpreted as a valid reference to a handler to be uninstalled by a client
application.

* user_handle - The user handle (ctypes object or None) returned by install_handler.

unlock ()
Relinquishes a lock for the specified resource.

visa_attributes_classes = [<class 'pyvisa.attributes.AttrVI_ATTR_RM SESSION'>, <class

wait_on_event (in_event_type, timeout, capture_timeout=False)
Wiaits for an occurrence of the specified event in this resource.

Parameters
* in_event_type — Logical identifier of the event(s) to wait for.

* timeout — Absolute time period in time units that the resource shall wait for a specified
event to occur before returning the time elapsed error. The time unit is in milliseconds.
None means waiting forever if necessary.

* capture_timeout — When True will not produce a VisalOError(VI_ERROR_TMO)
but instead return a WaitResponse with timed_out=True

Returns A WaitResponse object that contains event_type, context and ret value.

182 Chapter 1. General overview

https://docs.python.org/3/library/functions.html#int

PyVISA Documentation, Release 1.10.1

1.4.4 Constants module

Provides user-friendly naming to values used in different functions.

class pyvisa.constants.AccessModes
An enumeration.

exclusive_lock =1
Obtains a exclusive lock on the VISA resource.

no_lock =0
Does not obtain any lock on the VISA resource.

shared_lock = 2
Obtains a lock on the VISA resouce which may be shared between multiple VISA sessions.

class pyvisa.constants.StopBits
The number of stop bits that indicate the end of a frame.

one = 10
one_and a half = 15
two = 20

class pyvisa.constants.Parity
The parity types to use with every frame transmitted and received on a serial session.

even = 2
mark = 3
none = 0
odd = 1

space = 4

class pyvisa.constants.SerialTermination
The available methods for terminating a serial transfer.

last_bit =1
The transfer occurs with the last bit not set until the last character is sent.

none = 0
The transfer terminates when all requested data is transferred or when an error occurs.

termination_break = 3
The write transmits a break after all the characters for the write are sent.

termination_char = 2
The transfer terminate by searching for “/”” appending the termination character.

class pyvisa.constants.InterfaceType
The hardware interface

asrl = 4
Serial devices connected to either an RS-232 or RS-485 controller.

firewire = 9
Firewire device.
gpib = 1
GPIB Interface.

1.4. API 183

PyVISA Documentation, Release 1.10.1

gpib_vxi = 3

GPIB VXI (VME eXtensions for Instrumentation).
pxi = 5

PXI device.
rio = 8

Rio device.

rsnrp = 33024
Rohde and Schwarz Device via Passport

tcpip = 6

TCPIP device.
unknown = -1
usb = 7

Universal Serial Bus (USB) hardware bus.

vxi = 2
VXI (VME eXtensions for Instrumentation), VME, MXI (Multisystem eXtension Interface).

class pyvisa.constants.AddressState
An enumeration.

listenr = 2
talker = 1
unaddressed = 0

class pyvisa.constants.IOProtocol
An enumeration.

fde = 2
Fast data channel (FDC) protocol for VXI

hs488 = 3
High speed 488 transfer for GPIB

normal =1

protocol4882_ strs = 4
488 style transfer for serial

usbtmc_vendor = 5
Test measurement class vendor specific for USB

class pyvisa.constants.LineState
An enumeration.

asserted =1
unasserted = 0
unknown = -1

class pyvisa.constants.StatusCode
Specifies the status codes that NI-VISA driver-level operations can return.

error_abort = -1073807312
The operation was aborted.

error_allocation = -1073807300
Insufficient system resources to perform necessary memory allocation.

184 Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

error_attribute_read only = -1073807329
The specified attribute is read-only.

error_bus_error = -1073807304
Bus error occurred during transfer.

error_closing failed = -1073807338
Unable to deallocate the previously allocated data structures corresponding to this session or object refer-
ence.

error_connection_lost = -1073807194
The connection for the specified session has been lost.

error_file access = -1073807199
An error occurred while trying to open the specified file. Possible causes include an invalid path or lack of
access rights.

error_file i o = -1073807198
An error occurred while performing I/O on the specified file.

error_handler not_installed = -1073807320
A handler is not currently installed for the specified event.

error_in_progress = -1073807303
Unable to queue the asynchronous operation because there is already an operation in progress.

error_input_protocol_violation = -1073807305
Device reported an input protocol error during transfer.

error_interface number_not_configured = -1073807195
The interface type is valid but the specified interface number is not configured.

error_interrupt_pending = -1073807256
An interrupt is still pending from a previous call.

error_invalid_access_key = -1073807327
The access key to the resource associated with this session is invalid.

error_invalid access_mode = -1073807341
Invalid access mode.

error_invalid_address_space = -1073807282
Invalid address space specified.

error_invalid context = -1073807318
Specified event context is invalid.

error_invalid_degree = -1073807333
Specified degree is invalid.

error_invalid _event = -1073807322
Specified event type is not supported by the resource.

error_invalid_expression = -1073807344
Invalid expression specified for search.

error_invalid format = -1073807297
A format specifier in the format string is invalid.

error_invalid handler_ reference = -1073807319
The specified handler reference is invalid.

error_invalid_job_i_d = -1073807332
Specified job identifier is invalid.

1.4.

API 185

PyVISA Documentation, Release 1.10.1

error_invalid_length = -1073807229
Invalid length specified.

error_invalid_line = -1073807200
The value specified by the line parameter is invalid.

error_invalid_lock_type = -1073807328
The specified type of lock is not supported by this resource.

error_invalid _mask = -1073807299
Invalid buffer mask specified.

error_invalid mechanism = -1073807321
Invalid mechanism specified.

error_invalid_mode = -1073807215
The specified mode is invalid.

error_invalid_object = -1073807346
The specified session or object reference is invalid.

error_invalid offset = -1073807279
Invalid offset specified.

error_invalid_parameter = -1073807240
The value of an unknown parameter is invalid.

error_invalid_protocol = -1073807239
The protocol specified is invalid.

error_invalid_resource _name = -1073807342
Invalid resource reference specified. Parsing error.

error_invalid_setup = -1073807302

Unable to start operation because setup is invalid due to inconsistent state of properties.

error_invalid_size = -1073807237
Invalid size of window specified.

error_invalid width = -1073807278
Invalid source or destination width specified.

error_io = -1073807298
Could not perform operation because of I/O error.

error_library not_found = -1073807202
A code library required by VISA could not be located or loaded.

error_line_in_use = -1073807294
The specified trigger line is currently in use.

error_machine not_available = -1073807193
The remote machine does not exist or is not accepting any connections.

error_memory_not_shared = -1073807203
The device does not export any memory.

error_no_listeners = -1073807265
No listeners condition is detected (both NRFD and NDAC are deasserted).

error_no_permission = -1073807192
Access to the remote machine is denied.

186

Chapter 1

. General overview

PyVISA Documentation, Release 1.10.1

error_nonimplemented_operation = -1073807231
The specified operation is unimplemented.

error_nonsupported_attribute = -1073807331
The specified attribute is not defined or supported by the referenced session, event, or find list.

error_nonsupported_attribute_state = -1073807330
The specified state of the attribute is not valid or is not supported as defined by the session, event, or find
list.

error_nonsupported_format = -1073807295
A format specifier in the format string is not supported.

error_nonsupported_interrupt = -1073807201
The interface cannot generate an interrupt on the requested level or with the requested statusID value.

error_nonsupported_line = -1073807197
The specified trigger source line (trigSrc) or destination line (trigDest) is not supported by this VISA
implementation, or the combination of lines is not a valid mapping.

error_nonsupported_mechanism = -1073807196
The specified mechanism is not supported for the specified event type.

error_nonsupported _mode = -1073807290
The specified mode is not supported by this VISA implementation.

error_nonsupported_offset = -1073807276
Specified offset is not accessible from this hardware.

error_nonsupported_offset_alignment = -1073807248
The specified offset is not properly aligned for the access width of the operation.

error_nonsupported_operation = -1073807257
The session or object reference does not support this operation.

error_nonsupported_varying widths = -1073807275
Cannot support source and destination widths that are different.

error_nonsupported_width = -1073807242
Specified width is not supported by this hardware.

error_not_cic = -1073807264
The interface associated with this session is not currently the Controller-in-Charge.

error_not_enabled = -1073807313
The session must be enabled for events of the specified type in order to receive them.

error_not_system controller = -1073807263
The interface associated with this session is not the system controller.

error_output_protocol_violation = -1073807306
Device reported an output protocol error during transfer.

error_queue_error = -1073807301
Unable to queue asynchronous operation.

error_queue_overflow = -1073807315
The event queue for the specified type has overflowed, usually due to not closing previous events.

error_raw_read_protocol_violation = -1073807307
Violation of raw read protocol occurred during transfer.

error_raw_write_protocol_violation = -1073807308
Violation of raw write protocol occurred during transfer.

1.4.

API 187

PyVISA Documentation, Release 1.10.1

error_resource_busy = -1073807246
The resource is valid, but VISA cannot currently access it.

error_resource_locked = -1073807345
Specified type of lock cannot be obtained or specified operation cannot be performed because the resource
is locked.

error_resource_not_found = -1073807343
Insufficient location information, or the device or resource is not present in the system.

error_response_pending = -1073807271
A previous response is still pending, causing a multiple query error.

error_serial_framing = -1073807253
A framing error occurred during transfer.

error_serial_ overrun = -1073807252
An overrun error occurred during transfer. A character was not read from the hardware before the next
character arrived.

error_serial_ parity = -1073807254
A parity error occurred during transfer.

error_session_not_locked = -1073807204
The current session did not have any lock on the resource.

error_srq not_occurred = -1073807286
Service request has not been received for the session.

error_system error = -1073807360
Unknown system error.

error_timeout = -1073807339
Timeout expired before operation completed.

error_trigger_not_mapped = -1073807250
The path from the trigger source line (trigSrc) to the destination line (trigDest) is not currently mapped.

error_user buffer = -1073807247
A specified user buffer is not valid or cannot be accessed for the required size.

error_window_already mapped = -1073807232
The specified session currently contains a mapped window.

error_window_not_mapped = -1073807273
The specified session is currently unmapped.

success = 0
Operation completed successfully.

success_device_not_present = 1073676413
Session opened successfully, but the device at the specified address is not responding.

success_event_already_disabled = 1073676291
Specified event is already disabled for at least one of the specified mechanisms.

success_event_already_enabled = 1073676290
Specified event is already enabled for at least one of the specified mechanisms.

success_max_count_read = 1073676294
The number of bytes read is equal to the input count.

success_nested_exclusive = 1073676442
Operation completed successfully, and this session has nested exclusive locks.

188

Chapter 1. General overview

PyVISA Documentation, Release 1.10.1

success_nested shared = 1073676441
Operation completed successfully, and this session has nested shared locks.

success_no_more_handler_calls_in chain = 1073676440
Event handled successfully. Do not invoke any other handlers on this session for this event.

success_queue_already_empty = 1073676292
Operation completed successfully, but the queue was already empty.

success_queue_not_empty = 1073676416
Wait terminated successfully on receipt of an event notification. There is still at least one more event
occurrence of the requested type(s) available for this session.

success_syncronous = 1073676443
Asynchronous operation request was performed synchronously.

success_termination_character_read = 1073676293
The specified termination character was read.

success_trigger_already_mapped = 1073676414
The path from the trigger source line (trigSrc) to the destination line (trigDest) is already mapped.

warning configuration not_loaded = 1073676407
The specified configuration either does not exist or could not be loaded. The VISA-specified defaults are
used.

warning_ext_function_not_implemented = 1073676457
The operation succeeded, but a lower level driver did not implement the extended functionality.

warning nonsupported attribute_ state = 1073676420
Although the specified state of the attribute is valid, it is not supported by this resource implementation.

warning nonsupported_buffer = 1073676424
The specified buffer is not supported.

warning null_object = 1073676418
The specified object reference is uninitialized.

warning queue_overflow = 1073676300
VISA received more event information of the specified type than the configured queue size could hold.

warning unknown_status = 1073676421
The status code passed to the operation could not be interpreted.

1.4. API 189

PyVISA Documentation, Release 1.10.1

190 Chapter 1. General overview

Python Module Index

P

pyvisa.constants, 183

191

PyVISA Documentation, Release 1.10.1

192 Python Module Index

Index

A

AccessModes (class in pyvisa.constants), 183

address_state (pyvisa.resources.GPIBInterface at-
tribute), 141

AddressState (class in pyvisa.constants), 184

allow_dma (pyvisa.resources.GPIBInstrument
tribute), 130

allow_dma (pyvisa.resources.GPIBInterface attribute),

at-

142

allow_dma (pyvisa.resources.PXIInstrument attribute),
154

allow_dma (pyvisa.resources.Seriallnstrument at-
tribute), 79

allow_dma (pyvisa.resources.TCPIPInstrument at-

tribute), 91

allow_dma (pyvisa.resources.VXIInstrument attribute),
166

allow_dma (pyvisa.resources.VXIMemory attribute),
172

allow_transmit (pyvisa.resources.Seriallnstrument
attribute), 79

asrl (pyvisa.constants.InterfaceType attribute), 183

assert_interrupt_signal ()
(pyvisa.highlevel.VisaLibraryBase method), 35

assert_trigger () (pyvisa.highlevel VisaLibraryBase
method), 35

method), 120
assert_utility_signal ()
(pyvisa.highlevel.VisaLibraryBase method), 35
asserted (pyvisa.constants.LineState attribute), 184

atn_state (pyvisa.resources.GPIBInterface attribute),
142

B

baud_rate (pyvisa.resources.Seriallnstrument
tribute), 79

before_close () (pyvisa.resources.Firewirelnstrument
method), 149

before_close () (pyvisa.resources.GPIBInstrument
method), 131

before_close ()
method), 142

at-

(pyvisa.resources.GPIBInterface

before_close () (pyvisa.resources.MessageBasedResource

method), 65
before_close ()

method), 154
before_close()

method), 160

(pyvisa.resources. PXIInstrument

(pyvisa.resources.PXIMemory

before_close () (pyvisa.resources.RegisterBasedResource

method), 74
before_close ()

method), 61

(pyvisa.resources.Resource

assert_trigger () (pyvisa.resources.GPIBInstrument before_close () (pyvisa.resources.Seriallnstrument

method), 131

method), 80

assert_trigger () (pyvisa.resources.MessageBasedReSsireere_close () (pyvisa.resources. TCPIPInstrument

method), 65

assert_trigger () (pyvisa.resources.Seriallnstrument before_close ()

method), 79

assert_trigger () (pyvisa.resources.TCPIPInstrumentoefore_close ()

method), 91
assert_trigger ()

method), 100
assert_trigger () (pyvisa.resources.USBInstrument

method), 109
assert_trigger ()

(pyvisa.resources. TCPIPSocket

(pyvisa.resources.USBRaw

method), 91

(pyvisa.resources. TCPIPSocket

method), 100

(pyvisa.resources.USBInstrument
method), 109

before_close ()
method), 121

before_close()
method), 178

before_close()
method), 166

(pyvisa.resources. USBRaw
(pyvisa.resources.VXIBackplane

(pyvisa.resources.VXIInstrument

193

PyVISA Documentation, Release 1.10.1

before_close ()
method), 172

break_length (pyvisa.resources.Seriallnstrument at-
tribute), 80

break_state (pyvisa.resources.Seriallnstrument at-
tribute), 80

buffer_read()
method), 36

buffer _write()
method), 36

bytes_in_buffer (pyvisa.resources.Seriallnstrument
attribute), 80

(pyvisa.resources.VXIMemory

(pyvisa.highlevel.VisaLibraryBase

(pyvisa.highlevel VisaLibraryBase

C

chunk_size (pyvisa.resources.GPIBInstrument
tribute), 131

chunk_size (pyvisa.resources.MessageBasedResource
attribute), 65

chunk_size (pyvisa.resources.Seriallnstrument
attribute), 80

chunk_size (pyvisa.resources. TCPIPInstrument at-
tribute), 91

chunk_size (pyvisa.resources. TCPIPSocket attribute),
100

chunk_size (pyvisa.resources.USBInstrument
tribute), 109

chunk_size (pyvisa.resources. USBRaw attribute), 121

clear () (pyvisa.highlevel VisaLibraryBase method),
36

clear ()

at-

at-

(pyvisa.resources. Firewirelnstrument
method), 149
(pyvisa.resources.GPIBInstrument method),
131
clear () (pyvisa.resources.GPIBInterface method), 142
clear () (pyvisa.resources.MessageBasedResource
method), 65
clear () (pyvisa.resources.PXIInstrument method), 154
clear () (pyvisa.resources.PXIMemory method), 160
clear () (pyvisa.resources.RegisterBasedResource
method), 74
clear () (pyvisa.resources.Resource method), 61
clear () (pyvisa.resources.Seriallnstrument method),
80
clear () (pyvisa.resources.TCPIPInstrument method),
91
clear () (pyvisa.resources.TCPIPSocket method), 100
clear () (pyvisa.resources.USBInstrument method),
109

clear ()

close () (pyvisa.highlevel VisaLibraryBase method),
36

close() (pyvisa.resources. Firewirelnstrument

method), 149

(pyvisa.resources.GPIBInstrument method),

131

close () (pyvisa.resources.GPIBInterface method), 142

close() (pyvisa.resources.MessageBasedResource
method), 65

close () (pyvisa.resources.PXIInstrument method), 154

close () (pyvisa.resources.PXIMemory method), 160

close() (pyvisa.resources.RegisterBasedResource
method), 74

close () (pyvisa.resources.Resource method), 61

close () (pyvisa.resources.Seriallnstrument method),
80

close () (pyvisa.resources.TCPIPInstrument method),
91

close () (pyvisa.resources. TCPIPSocket method), 100

close () (pyvisa.resources.USBInstrument method),
109

close ()

close () (pyvisa.resources.USBRaw method), 121
close () (pyvisa.resources.VXIBackplane method), 178
close () (pyvisa.resources.VXIInstrument method), 166

close () (pyvisa.resources.VXIMemory method), 172

control_atn () (pyvisa.resources.GPIBInstrument
method), 131

control_atn ()
method), 142

control_in()
method), 109

control_out ()
method), 110

control_ren () (pyvisa.resources.GPIBInstrument
method), 131

control_ren ()
method), 142

control_ren () (pyvisa.resources.TCPIPInstrument
method), 91

control_ren ()
method), 110

CR (pyvisa.resources.GPIBInstrument attribute), 130

CR (pyvisa.resources.MessageBasedResource attribute),
65

CR (pyvisa.resources.Seriallnstrument attribute), 79

CR (pyvisa.resources. TCPIPInstrument attribute), 91

CR (pyvisa.resources. TCPIPSocket attribute), 100

CR (pyvisa.resources.USBInstrument attribute), 109

(pyvisa.resources.GPIBInterface

(pyvisa.resources.USBInstrument

(pyvisa.resources.USBInstrument

(pyvisa.resources.GPIBlInterface

(pyvisa.resources.USBInstrument

clear () (pyvisa.resources.USBRaw method), 121 CR (pyvisa.resources. USBRaw attribute), 120
clear () (pyvisa.resources.VXIBackplane method), 178
clear () (pyvisa.resources.VXIInstrument method), 166 D
clear () (pyvisa.resources.VXIMemory method), 172 data_bits (pyvisa.resources.Seriallnstrument at-
close () (pyvisa.highlevel.ResourceManager method), tribute), 80
58
194 Index

PyVISA Documentation, Release 1.10.1

destination_increment
(pyvisa.resources.PXIInstrument
154

destination_increment
(pyvisa.resources.PXIMemory
161

destination_increment
(pyvisa.resources.VXIInstrument
166

destination_increment
(pyvisa.resources.VXIMemory
172

disable_event () (pyvisa.highlevel. VisaLibraryBase
method), 36

attribute),

attribute),

attribute),

attribute),

disable_event () (pyvisa.resources.Firewirelnstrumentdiscard_events ()

method), 149
disable_event () (pyvisa.resources.GPIBInstrument
method), 131
disable_event ()
method), 142

(pyvisa.resources.GPIBInterface

discard_events () (pyvisa.resources.MessageBasedResource
method), 65

discard_events () (pyvisa.resources.PXIInstrument
method), 155

discard_events ()
method), 161

discard_events () (pyvisa.resources.RegisterBasedResource
method), 74

discard_events ()
method), 61

discard_events () (pyvisa.resources.Seriallnstrument
method), 81

discard_events () (pyvisa.resources.TCPIPInstrument
method), 92

(pyvisa.resources.PXIMemory

(pyvisa.resources.Resource

(pyvisa.resources. TCPIPSocket
method), 101

discard_events () (pyvisa.resources.USBInstrument
method), 110

discard_events ()
method), 121

(pyvisa.resources.USBRaw

disable_event () (pyvisa.resources.MessageBasedResaireeccard_events () (pyvisa.resources.VXIBackplane

method), 65
disable_event ()

method), 155
disable_event ()

method), 161

(pyvisa.resources. PXIInstrument

(pyvisa.resources.PXIMemory

method), 178
discard_events () (pyvisa.resources.VXIInstrument
method), 167
discard_events ()
method), 173

(pyvisa.resources.VXIMemory

disable_event () (pyvisa.resources.RegisterBasedResodicgcard_null (pyvisa.resources.Seriallnstrument at-

method), 74
disable_event ()
method), 61
disable_event () (pyvisa.resources.Seriallnstrument
method), 81
disable_event () (pyvisa.resources.TCPIPInstrument
method), 92
disable_event ()
method), 100
disable_event ()
method), 110
disable_event ()
method), 121
disable_event ()
method), 178
disable_event ()
method), 167
disable_event ()
method), 173
discard_events () (pyvisa.highlevel.VisaLibraryBase
method), 37

(pyvisa.resources.Resource

(pyvisa.resources. TCPIPSocket
(pyvisa.resources.USBInstrument
(pyvisa.resources.USBRaw
(pyvisa.resources.VXIBackplane
(pyvisa.resources.VXIInstrument

(pyvisa.resources.VXIMemory

discard_events () (pyvisa.resources.Firewirelnstrumeminable event ()

method), 149

tribute), 81

enable_event () (pyvisa.highlevel VisaLibraryBase
method), 37

enable_event () (pyvisa.resources.Firewirelnstrument
method), 149

enable_event () (pyvisa.resources.GPIBInstrument
method), 131

enable_event ()
method), 143

enable_event () (pyvisa.resources.MessageBasedResource
method), 65

enable_event ()
method), 155

enable_event ()
method), 161

enable_event () (pyvisa.resources.RegisterBasedResource
method), 74

enable_event ()
method), 61

(pyvisa.resources.GPIBInterface

(pyvisa.resources. PXIInstrument

(pyvisa.resources.PXIMemory

(pyvisa.resources.Resource

(pyvisa.resources.Seriallnstrument
method), 81

discard_events () (pyvisa.resources.GPIBInstrument enable_event () (pyvisa.resources. TCPIPInstrument

method), 131
discard_events () (pyvisa.resources.GPIBInterface
method), 143

method), 92
enable_event ()
method), 101

(pyvisa.resources. TCPIPSocket

Index

195

PyVISA Documentation, Release 1.10.1

enable_event () (pyvisa.resources.USBInstrument
method), 110

enable_event ()
method), 121

enable_event ()

(pyvisa.resources.USBRaw

(pyvisa.resources.VXIBackplane

method), 179
enable_event () (pyvisa.resources.VXIInstrument
method), 167

enable_event ()
method), 173
enable_repeat_addressing

(pyvisa.resources.VXIMemory

(pyvisa.resources.GPIBInstrument attribute),
132

enable_unaddressing
(pyvisa.resources.GPIBInstrument attribute),
132

encoding (pyvisa.resources.GPIBInstrument at-

tribute), 132
encoding (pyvisa.resources.MessageBasedResource
attribute), 66

encoding (pyvisa.resources.Seriallnstrument at-
tribute), 81

encoding (pyvisa.resources.TCPIPInstrument at-
tribute), 92

encoding (pyvisa.resources. TCPIPSocket attribute),
101

encoding (pyvisa.resources.USBInstrument attribute),
111

encoding (pyvisa.resources.USBRaw attribute), 121

end_input (pyvisa.resources.Seriallnstrument
tribute), 81

EOI line, 14

error_abort (pyvisa.constants.StatusCode attribute),
184

error_allocation (pyvisa.constants.StatusCode at-
tribute), 184

error_attribute_read_only
(pyvisa.constants.StatusCode
184

error_bus_error (pyvisa.constants.StatusCode at-
tribute), 185

error_closing failed

at-

attribute),

(pyvisa.constants.StatusCode attribute),
185

error_connection_lost
(pyvisa.constants.StatusCode attribute),

185
error_file_access
attribute), 185
error_file_i_o (pyvisa.constants.StatusCode at-
tribute), 185
error_handler_not_installed
(pyvisa.constants.StatusCode
185

(pyvisa.constants.StatusCode

attribute),

error_in_progress
attribute), 185
error_input_protocol_violation
(pyvisa.constants.StatusCode
185
error_interface_number_not_configured
(pyvisa.constants.StatusCode attribute), 185
error_interrupt_pending
(pyvisa.constants.StatusCode
185
error_invalid_access_key
(pyvisa.constants.StatusCode
185
error_invalid_access_mode
(pyvisa.constants.StatusCode
185
error_invalid_address_space
(pyvisa.constants.StatusCode
185
error_invalid_context
(pyvisa.constants.StatusCode
185
error_invalid_degree
(pyvisa.constants.StatusCode
185
error_invalid_event
(pyvisa.constants.StatusCode
185
error_invalid_expression
(pyvisa.constants.StatusCode
185
error_invalid_format
(pyvisa.constants.StatusCode
185
error_invalid_handler_reference
(pyvisa.constants.StatusCode
185
error_invalid_job_i_d
(pyvisa.constants.StatusCode
185
error_invalid_length
(pyvisa.constants.StatusCode
185
error_invalid_line (pyvisa.constants.StatusCode
attribute), 186
error_invalid_lock_type
(pyvisa.constants.StatusCode
186
error_invalid_mask (pyvisa.constants.StatusCode
attribute), 186
error_invalid_mechanism
(pyvisa.constants.StatusCode
186
error_invalid_mode (pyvisa.constants.StatusCode

(pyvisa.constants.StatusCode

attribute),

attribute),

attribute),

attribute),

attribute),

attribute),

attribute),

attribute),

attribute),

attribute),

attribute),

attribute),

attribute),

attribute),

attribute),

196

Index

PyVISA Documentation, Release 1.10.1

attribute), 186
error_invalid_object
(pyvisa.constants.StatusCode
186
error_invalid_offset
(pyvisa.constants.StatusCode
186
error_invalid_parameter
(pyvisa.constants.StatusCode
186
error_invalid_protocol
(pyvisa.constants.StatusCode
186
error_invalid_resource_name
(pyvisa.constants.StatusCode
186
error_invalid_setup
(pyvisa.constants.StatusCode
186
error_invalid_size (pyvisa.constants.StatusCode
attribute), 186
error_invalid_width
(pyvisa.constants.StatusCode
186
error_1io (pyvisa.constants.StatusCode attribute), 186
error_library_ not_found
(pyvisa.constants.StatusCode
186
error_line_in_use
attribute), 186
error_machine_not_available

attribute),

attribute),

attribute),

attribute),

attribute),

attribute),

attribute),

attribute),

(pyvisa.constants.StatusCode

(pyvisa.constants.StatusCode attribute),
186

error_memory_not_shared
(pyvisa.constants.StatusCode attribute),

186

error_no_listeners (pyvisa.constants.StatusCode
attribute), 186

error_no_permission

187
error_nonsupported_line
(pyvisa.constants.StatusCode
187
error_nonsupported_mechanism
(pyvisa.constants.StatusCode
187
error_nonsupported_mode
(pyvisa.constants.StatusCode
187
error_nonsupported_offset
(pyvisa.constants.StatusCode
187
error_nonsupported_offset_alignment
(pyvisa.constants.StatusCode attribute), 187
error_nonsupported_operation
(pyvisa.constants.StatusCode
187
error_nonsupported_varying_widths

attribute),

attribute),

attribute),

attribute),

attribute),

(pyvisa.constants.StatusCode attribute),
187

error_nonsupported_width
(pyvisa.constants.StatusCode attribute),

187
error_not_cic

tribute), 187
error_not_enabled (pyvisa.constants.StatusCode

attribute), 187
error_not_system_controller

(pyvisa.constants.StatusCode at-

(pyvisa.constants.StatusCode attribute),

187
error_output_protocol_violation

(pyvisa.constants.StatusCode attribute),

187
error_gueue_error

attribute), 187
error_qgueue_overflow

(pyvisa.constants.StatusCode
187

(pyvisa.constants.StatusCode

attribute),

(pyvisa.constants.StatusCode attribute), error_raw_read_protocol_violation

186 (pyvisa.constants.StatusCode attribute),
error_nonimplemented_operation 187

(pyvisa.constants.StatusCode attribute), error_raw_write_protocol_violation

186 (pyvisa.constants.StatusCode attribute), 187
error_nonsupported_attribute error_resource_busy

(pyvisa.constants.StatusCode attribute), (pyvisa.constants.StatusCode attribute),

187 187
error_nonsupported_attribute_state error_resource_locked

(pyvisa.constants.StatusCode attribute), 187 (pyvisa.constants.StatusCode attribute),
error_nonsupported_format 188

(pyvisa.constants.StatusCode attribute), error_resource_not_found

187 (pyvisa.constants.StatusCode attribute),
error_nonsupported_interrupt 188

(pyvisa.constants.StatusCode attribute), error_response_pending
Index 197

PyVISA Documentation, Release 1.10.1

(pyvisa.constants.StatusCode attribute),
188

error_serial_ framing
(pyvisa.constants.StatusCode
188

error_serial_overrun
(pyvisa.constants.StatusCode
188

error_serial_ parity
(pyvisa.constants.StatusCode
188

error_session_not_locked
(pyvisa.constants.StatusCode
188

error_srqg_not_occurred
(pyvisa.constants.StatusCode
188

error_system_error (pyvisa.constants.StatusCode
attribute), 188

error_timeout (pyvisa.constants.StatusCode at-
tribute), 188

error_trigger_not_mapped
(pyvisa.constants.StatusCode
188

error_user_buffer
attribute), 188

error_window_already_mapped

attribute),

attribute),

attribute),

attribute),

attribute),

attribute),

(pyvisa.constants.StatusCode

(pyvisa.constants.StatusCode attribute),
188

error_window_not_mapped
(pyvisa.constants.StatusCode attribute),

188
even (pyvisa.constants. Parity attribute), 183
exclusive_lock (pyvisa.constants.AccessModes at-
tribute), 183

F

fdc (pyvisa.constants.IOProtocol attribute), 184

firewire (pyvisa.constants.InterfaceType attribute),
183

FirewireInstrument (class in pyvisa.resources),
149

flow_control (pyvisa.resources.Seriallnstrument at-
tribute), 81

flush () (pyvisa.highlevel VisaLibraryBase method),
37

flush () (pyvisa.resources.GPIBInstrument method),
132

flush () (pyvisa.resources.GPIBInterface method), 143

flush () (pyvisa.resources.MessageBasedResource
method), 66

flush () (pyvisa.resources. TCPIPInstrument method),
92

flush () (pyvisa.resources. TCPIPSocket method), 101

flush () (pyvisa.resources.USBInstrument method),
111

flush () (pyvisa.resources.USBRaw method), 121

G

get_attribute () (pyvisa.highlevel VisaLibraryBase
method), 38

get_debug_info () (pyvisa.highlevel VisaLibraryBase
static method), 38

get_last_status_in_session ()
(pyvisa.highlevel.VisaLibraryBase method), 38

get_library_paths ()
(pyvisa.highlevel.VisaLibraryBase
method), 38

get_visa_attribute ()
(pyvisa.resources.Firewirelnstrument method),
149

get_visa_attribute ()

static

(pyvisa.resources.GPIBInstrument ~ method),
132

get_visa_attribute ()
(pyvisa.resources.GPIBInterface method),

143

get_visa_attribute ()
(pyvisa.resources.MessageBasedResource
method), 66

get_visa_attribute ()
(pyvisa.resources.PXIInstrument
155

get_visa_attribute ()
(pyvisa.resources.PXIMemory method), 161

get_visa_attribute ()
(pyvisa.resources.RegisterBasedResource
method), 74

get_visa_attribute ()
(pyvisa.resources.Resource method), 61

get_visa_attribute ()
(pyvisa.resources.Seriallnstrument method), 82

get_visa_attribute ()
(pyvisa.resources. TCPIPInstrument
92

get_visa_attribute ()
(pyvisa.resources. TCPIPSocket
101

get_visa_attribute ()
(pyvisa.resources.USBInstrument
111

get_visa_attribute ()

method),

method),

method),

method),

flush () (pyvisa.resources.Seriallnstrument method), (pyvisa.resources.USBRaw method), 121
82 get_visa_attribute ()
(pyvisa.resources.VXIBackplane method),
198 Index

PyVISA Documentation, Release 1.10.1

179

get_visa_attribute ()
(pyvisa.resources.VXIInstrument
167

get_visa_attribute()
(pyvisa.resources.VXIMemory method), 173

gpib (pyvisa.constants.InterfaceType attribute), 183

gpib_command () (pyvisa.highlevel.VisaLibraryBase
method), 38

gpib_control_atn()
(pyvisa.highlevel.VisaLibraryBase method), 38

gpib_control_ren()
(pyvisa.highlevel.VisaLibraryBase method), 39

method),

ignore_warning ()
method), 101
ignore_warning () (pyvisa.resources.USBInstrument
method), 111
ignore_warning ()
method), 121
ignore_warning () (pyvisa.resources.VXIBackplane
method), 179
ignore_warning () (pyvisa.resources.VXIInstrument
method), 167
ignore_warning ()
method), 173
implementation_version

(pyvisa.resources. TCPIPSocket

(pyvisa.resources.USBRaw

(pyvisa.resources.VXIMemory

gpib_pass_control () (pyvisa.resources.Firewirelnstrument at-
(pyvisa.highlevel.VisaLibraryBase method), 39 tribute), 149
gpib_send_ifc () (pyvisa.highlevel VisaLibraryBase implementation_version
method), 39 (pyvisa.resources.GPIBInstrument attribute),
gpib_vxi (pyvisa.constants.InterfaceType attribute), 132
183 implementation_version
GPIBInstrument (class in pyvisa.resources), 130 (pyvisa.resources.GPIBlInterface attribute),
GPIBInterface (class in pyvisa.resources), 141 143
group_execute_trigger () implementation_version
(pyvisa.resources.GPIBInterface method), (pyvisa.resources.MessageBasedResource
143 attribute), 66
implementation_version
H (pyvisa.resources. PXIInstrument attribute),
handlers (pyvisa.highlevel.VisaLibraryBase attribute), 155
39 implementation_version
hs488 (pyvisa.constants.IOProtocol attribute), 184 (pyvisa.resources.PXIMemory attribute),
161
| implementation_version
ignore_warning () (pyvisa.highlevel VisaLibraryBase (pyvisa.resources.RegisterBasedResource
method), 39 attribute), 75
ignore_warning () (pyvisa.resources.FirewirelnstrumepfiPlementation _version
method), 149 (pyvisa.resources.Resource attribute), 61
ignore_warning () (pyvisa.resources.GPIBInstrument implementation_version
method), 132 (pyvisa.resources.Seriallnstrument attribute),
ignore_warning () (pyvisa.resources.GPIBInterface 82
method), 143 implementation_version
ignore_warning () (pyvisa.resources.MessageBasedResource (pyvisa.resources. TCPIPInstrument attribute),
method), 66
ignore_warning () (pyvisa.resources.PXIInstrument implementation version
method), 155 (pyvisa.resources. TCPIPSocket attribute),
ignore_warning () (pyvisa.resources.PXIMemory 101
method), 161 implementation_version
ignore_warning () (pyvisa.resources.RegisterBasedResource (pyvisa.resources.USBInstrument attribute),
method), 74 111
ignore_warning () (pyvisa.resources.Resource implementation version
method), 61 (pyvisa.resources.USBRaw attribute), 121
ignore_warning () (pyvisa.resources.Seriallnstrument implementation version
method), 82 (pyvisa.resources.VXIBackplane attribute),
ignore_warning () (pyvisa.resources. TCPIPInstrument 179
method), 92 implementation_version
(pyvisa.resources.VXIInstrument attribute),

Index

199

PyVISA Documentation, Release 1.10.1

167

implementation_version
(pyvisa.resources.VXIMemory
173

in_16 () (pyvisa.highlevel VisaLibraryBase method),
40

in_32 () (pyvisa.highlevel VisaLibraryBase method),
40

in_64 () (pyvisa.highlevel VisaLibraryBase method),
40

in_8 () (pyvisa.highlevel. VisaLibraryBase method), 40

install_handler ()
(pyvisa.highlevel.VisaLibraryBase method), 41

install_handler ()
(pyvisa.resources.Firewirelnstrument method),
150

install_handler ()

attribute),

(pyvisa.resources.GPIBInstrument ~ method),
132

install_handler ()
(pyvisa.resources.GPIBInterface method),

143
install_handler ()
(pyvisa.resources.MessageBasedResource
method), 66
install handler ()
(pyvisa.resources.PXIInstrument
155
install_handler ()
method), 162
install_ handler ()
(pyvisa.resources.RegisterBasedResource
method), 75
install_handler ()
method), 62
install_handler ()
(pyvisa.resources.Seriallnstrument method), 82
install_handler ()
(pyvisa.resources. TCPIPInstrument
93
install_handler () (pyvisa.resources. TCPIPSocket
method), 102
install_handler ()
(pyvisa.resources.USBInstrument
111
install_handler ()
method), 122
install_handler ()

method),

(pyvisa.resources.PXIMemory

(pyvisa.resources.Resource

method),

method),

(pyvisa.resources.USBRaw

(pyvisa.resources.VXIBackplane method),
179

install_handler ()
(pyvisa.resources.VXIInstrument method),

168

install_handler () (pyvisa.resources.VXIMemory

method), 174

install_visa_handler ()
(pyvisa.highlevel.VisaLibraryBase method), 41

interface_number (pyvisa.resources.Firewirelnstrument
attribute), 150

interface_number (pyvisa.resources.GPIBInstrument
attribute), 133

interface_number (pyvisa.resources.GPIBInterface
attribute), 144

interface_number (pyvisa.resources.MessageBasedResource

attribute), 66
interface_number (pyvisa.resources.PXIInstrument
attribute), 156
interface_number
attribute), 162

(pyvisa.resources.PXIMemory

interface_number (pyvisa.resources.RegisterBasedResource

attribute), 75

interface_number (pyvisa.resources.Resource at-
tribute), 62

interface_number (pyvisa.resources.Seriallnstrument
attribute), 82

interface_number (pyvisa.resources. TCPIPInstrument
attribute), 93

interface_number (pyvisa.resources. TCPIPSocket
attribute), 102

interface_number (pyvisa.resources.USBInstrument
attribute), 111

interface_number (pyvisa.resources.USBRaw at-
tribute), 122

interface_number (pyvisa.resources.VXIBackplane
attribute), 179

interface_number (pyvisa.resources.VXIInstrument
attribute), 168

interface_number
attribute), 174

interface_type (pyvisa.resources.Firewirelnstrument
attribute), 150

interface_type (pyvisa.resources.GPIBInstrument
attribute), 133

interface_type (pyvisa.resources.GPIBInterface at-
tribute), 144

interface_type (pyvisa.resources.MessageBasedResource
attribute), 67

interface_type (pyvisa.resources.PXIInstrument at-
tribute), 156

interface_type (pyvisa.resources.PXIMemory at-
tribute), 162

interface_type (pyvisa.resources.RegisterBasedResource
attribute), 75

interface_type
tribute), 62

interface_type (pyvisa.resources.Seriallnstrument
attribute), 83

interface_type (pyvisa.resources.TCPIPInstrument

(pyvisa.resources.VXIMemory

(pyvisa.resources.Resource at-

200

Index

PyVISA Documentation, Release 1.10.1

attribute), 93

interface_type (pyvisa.resources. TCPIPSocket at-
tribute), 102

interface_type (pyvisa.resources.USBInstrument
attribute), 112

interface_type
tribute), 122

interface_type (pyvisa.resources.VXIBackplane at-
tribute), 180

interface_type (pyvisa.resources.VXIInstrument at-
tribute), 168

(pyvisa.resources. USBRaw at-

interface_type (pyvisa.resources.VXIMemory at-
tribute), 174

InterfaceType (class in pyvisa.constants), 183

io_protocol (pyvisa.resources.GPIBInstrument at-
tribute), 133

io_protocol (pyvisa.resources.GPIBInterface at-
tribute), 144

io_protocol (pyvisa.resources.Seriallnstrument at-
tribute), 83

io_protocol (pyvisa.resources. TCPIPSocket at-

tribute), 102

io_protocol (pyvisa.resources.USBInstrument
attribute), 112

io_protocol (pyvisa.resources.USBRaw attribute),
122

io_protocol (pyvisa.resources.VXIInstrument
tribute), 168

IOProtocol (class in pyvisa.constants), 184

is_4882_compliant
(pyvisa.resources.USBInstrument
112

is_4882_compliant
(pyvisa.resources.VXIInstrument
168

is_controller_in_charge
(pyvisa.resources.GPIBInterface
144

is_system_controller
(pyvisa.resources.GPIBInterface
144

issue_warning_on (pyvisa.highlevel.VisaLibraryBase
attribute), 41

at-

attribute),

attribute),

attribute),

attribute),

L

last_bit (pyvisa.constants.SerialTermination
tribute), 183

last_status (pyvisa.highlevel ResourceManager at-
tribute), 58

last_status (pyvisa.highlevel.VisaLibraryBase at-
tribute), 41

last_status (pyvisa.resources.Firewirelnstrument
attribute), 150

at-

last_status (pyvisa.resources.GPIBInstrument at-
tribute), 133

last_status (pyvisa.resources.GPIBInterface
tribute), 144

last_status (pyvisa.resources.MessageBasedResource
attribute), 67

at-

last_status (pyvisa.resources.PXIInstrument at-
tribute), 156
last_status (pyvisa.resources.PXIMemory at-

tribute), 162

last_status (pyvisa.resources.RegisterBasedResource
attribute), 75

last_status (pyvisa.resources.Resource attribute),
62

last_status (pyvisa.resources.Seriallnstrument at-
tribute), 83

last_status (pyvisa.resources.TCPIPInstrument at-
tribute), 93

last_status (pyvisa.resources. TCPIPSocket
tribute), 102

last_status (pyvisa.resources.USBInstrument
attribute), 112

last_status (pyvisa.resources. USBRaw attribute),
122

at-

last_status (pyvisa.resources.VXIBackplane at-
tribute), 180

last_status (pyvisa.resources.VXIInstrument at-
tribute), 168

last_status (pyvisa.resources.VXIMemory at-

tribute), 174

LF (pyvisa.resources.GPIBInstrument attribute), 130

LF (pyvisa.resources.MessageBasedResource attribute),
65

LF (pyvisa.resources.Seriallnstrument attribute), 79

LF (pyvisa.resources. TCPIPInstrument attribute), 91

LF (pyvisa.resources.TCPIPSocket attribute), 100

LF (pyvisa.resources.USBInstrument attribute), 109

LF (pyvisa.resources.USBRaw attribute), 120

LineState (class in pyvisa.constants), 184

list_resources () (pyvisa.highlevel.ResourceManager
method), 58

list_resources () (pyvisa.highlevel.VisaLibraryBase
method), 41

list_resources_info ()
(pyvisa.highlevel.ResourceManager
59

listenr (pyvisa.constants.AddressState attribute), 184

lock () (pyvisa.highlevel.VisaLibraryBase method), 41

lock () (pyvisa.resources.Firewirelnstrument method),

150

(pyvisa.resources.GPIBInstrument

133

lock () (pyvisa.resources.GPIBInterface method), 144

lock () (pyvisa.resources.MessageBasedResource

method),

lock () method),

Index

201

PyVISA Documentation, Release 1.10.1

method), 67
lock () (pyvisa.resources.PXIInstrument method), 156
lock () (pyvisa.resources.PXIMemory method), 162
lock () (pyvisa.resources.RegisterBasedResource
method), 75
lock () (pyvisa.resources.Resource method), 62
lock () (pyvisa.resources.Seriallnstrument method), 83

lock () (pyvisa.resources.TCPIPInstrument method),
93

lock () (pyvisa.resources. TCPIPSocket method), 102

lock () (pyvisa.resources.USBInstrument method), 112

lock () (pyvisa.resources.USBRaw method), 122

lock () (pyvisa.resources.VXIBackplane method), 180

lock () (pyvisa.resources.VXIInstrument method), 169

lock () (pyvisa.resources.VXIMemory method), 174

lock_context () (pyvisa.resources.Firewirelnstrument
method), 150

lock_context () (pyvisa.resources.GPIBInstrument
method), 133

lock_context ()
method), 145

(pyvisa.resources.GPIBInterface

lock_context () (pyvisa.resources.MessageBasedResource

method), 67
lock_context ()

method), 156
lock_context ()

(pyvisa.resources. PXIInstrument

(pyvisa.resources.PXIMemory

method), 67
lock_excl ()
method), 156
lock_excl () (pyvisa.resources.PXIMemory method),
163
lock_excl () (pyvisa.resources.RegisterBasedResource
method), 76
lock_excl () (pyvisa.resources.Resource method), 63
lock_excl () (pyvisa.resources.Seriallnstrument
method), 83
lock_excl () (pyvisa.resources. TCPIPInstrument
method), 93
lock_excl ()
method), 103
lock_excl ()
method), 113
lock_excl () (pyvisa.resources. USBRaw method),
123
lock_excl ()
method), 180
lock_excl ()
method), 169
lock_excl () (pyvisa.resources.VXIMemory method),
175
lock_state (pyvisa.resources.Firewirelnstrument at-
tribute), 151

(pyvisa.resources.PXIInstrument

(pyvisa.resources. TCPIPSocket

(pyvisa.resources. USBInstrument

(pyvisa.resources.VXIBackplane

(pyvisa.resources. VXIInstrument

method), 162 lock_state (pyvisa.resources.GPIBInstrument at-
lock_context () (pyvisa.resources.RegisterBasedResource tribute), 134

method), 75 lock_state (pyvisa.resources.GPIBInterface at-
lock_context () (pyvisa.resources.Resource tribute), 145

method), 62 lock_state (pyvisa.resources.MessageBasedResource
lock_context () (pyvisa.resources.Seriallnstrument attribute), 67

method), 83 lock_state (pyvisa.resources.PXIInstrument at-
lock_context () (pyvisa.resources.TCPIPInstrument tribute), 156

method), 93 lock_state (pyvisa.resources.PXIMemory attribute),

lock_context ()
method), 102
lock_context ()
method), 112
lock_context ()
method), 123
lock_context ()
method), 180
lock_context ()
method), 169
lock_context ()
method), 174
lock_excl () (pyvisa.resources. Firewirelnstrument
method), 151
lock_excl () (pyvisa.resources.GPIBInstrument
method), 134
lock_excl ()
method), 145
lock_excl () (pyvisa.resources.MessageBasedResource

(pyvisa.resources. TCPIPSocket
(pyvisa.resources.USBInstrument
(pyvisa.resources.USBRaw
(pyvisa.resources.VXIBackplane
(pyvisa.resources.VXIInstrument

(pyvisa.resources.VXIMemory

(pyvisa.resources.GPIBInterface

163

lock_state (pyvisa.resources.RegisterBasedResource
attribute), 76

lock_state (pyvisa.resources.Resource attribute), 63

lock_state (pyvisa.resources.Seriallnstrument
attribute), 83

lock_state (pyvisa.resources. TCPIPInstrument at-
tribute), 94

lock_state (pyvisa.resources. TCPIPSocket attribute),
103

lock_state (pyvisa.resources.USBInstrument
tribute), 113

lock_state (pyvisa.resources.USBRaw attribute), 123

at-

lock_state (pyvisa.resources.VXIBackplane at-
tribute), 180
lock_state (pyvisa.resources.VXIInstrument at-

tribute), 169
lock_state (pyvisa.resources.VXIMemory attribute),
175

202

Index

PyVISA Documentation, Release 1.10.1

M

manufacturer_id (pyvisa.resources.PXIInstrument
attribute), 157

manufacturer_id (pyvisa.resources.USBInstrument
attribute), 113

manufacturer_id (pyvisa.resources.USBRaw at-
tribute), 123

manufacturer_id (pyvisa.resources.VXIInstrument
attribute), 169

manufacturer_name

(pyvisa.resources.PXIInstrument attribute),
157

manufacturer_name
(pyvisa.resources.USBInstrument attribute),

113

manufacturer_name (pyvisa.resources.USBRaw at-
tribute), 123

manufacturer_name

(pyvisa.resources.VXIInstrument attribute),
169

map_address () (pyvisa.highlevel.VisaLibraryBase
method), 42

map_trigger () (pyvisa.highlevel VisaLibraryBase
method), 42

mark (pyvisa.constants.Parity attribute), 183
maximum_interrupt_size
(pyvisa.resources.USBInstrument
113
maximum_interrupt_size
(pyvisa.resources.USBRaw attribute), 123
memory_allocation ()
(pyvisa.highlevel.VisaLibraryBase method), 42
memory_free () (pyvisa.highlevel VisaLibraryBase

attribute),

method), 43

MessageBasedResource (class in pyvisa.resources),
65

model_code (pyvisa.resources.PXIlInstrument at-
tribute), 157

model_code (pyvisa.resources.USBInstrument at-

tribute), 113
model_code (pyvisa.resources.USBRaw attribute), 124

model_code (pyvisa.resources.VXIInstrument at-
tribute), 169

model_name (pyvisa.resources.PXlInstrument at-
tribute), 157

model_name (pyvisa.resources.USBInstrument at-

tribute), 113
model_name (pyvisa.resources.USBRaw attribute), 124
model_name (pyvisa.resources.VXlInstrument at-
tribute), 170
move () (pyvisa.highlevel.VisaLibraryBase method), 43
move_asynchronously ()
(pyvisa.highlevel.VisaLibraryBase method), 43
move_in () (pyvisa.highlevel. VisaLibraryBase

method), 44
move_in () (pyvisa.resources. Firewirelnstrument
method), 151
move_in () (pyvisa.resources.PXIInstrument method),
157
move_in ()
163
move_in () (pyvisa.resources.RegisterBasedResource
method), 76
move_in () (pyvisa.resources.VXIMemory method),
175
move_in_16()
method), 44
move_in_32()
method), 44
move_in_64 ()
method), 45
move_in_8 ()
method), 45
move_out ()
method), 45
move_out () (pyvisa.resources.Firewirelnstrument
method), 151
move_out ()
method), 157
move_out () (pyvisa.resources.PXIMemory method),

(pyvisa.resources.PXIMemory method),

(pyvisa.highlevel.VisaLibraryBase
(pyvisa.highlevel.VisaLibraryBase
(pyvisa.highlevel.VisaLibraryBase
(pyvisa.highlevel.VisaLibraryBase

(pyvisa.highlevel.VisaLibraryBase

(pyvisa.resources.PXIInstrument

163

move_out () (pyvisa.resources.RegisterBasedResource
method), 76

move_out () (pyvisa.resources.VXIMemory method),
175

move_out_16() (pyvisa.highlevel.VisaLibraryBase
method), 46

move_out_32 () (pyvisa.highlevel.VisaLibraryBase
method), 46

move_out_64 () (pyvisa.highlevel.VisaLibraryBase
method), 46

move_out_8 () (pyvisa.highlevel.VisaLibraryBase
method), 47

N

ndac_state (pyvisa.resources.GPIBInterface
tribute), 145

no_lock (pyvisa.constants.AccessModes attribute), 183

none (pyvisa.constants.Parity attribute), 183

none (pyvisa.constants.SerialTermination attribute), 183

normal (pyvisa.constants.IOProtocol attribute), 184

O

odd (pyvisa.constants. Parity attribute), 183

one (pyvisa.constants.StopBits attribute), 183

one_and_a_half (pyvisa.constants.StopBits
tribute), 183

open () (pyvisa.highlevel. VisaLibraryBase method), 47

at-

at-

Index

203

PyVISA Documentation, Release 1.10.1

open () (pyvisa.resources.Firewirelnstrument method),
151
(pyvisa.resources.GPIBInstrument

134

open () (pyvisa.resources.GPIBInterface method), 145

open () (pyvisa.resources.MessageBasedResource
method), 67

open () (pyvisa.resources.PXIInstrument method), 158

open () (pyvisa.resources.PXIMemory method), 163

open () (pyvisa.resources.RegisterBasedResource
method), 76

open () (pyvisa.resources.Resource method), 63

open () (pyvisa.resources.Seriallnstrument method), 84

open () method),

open () (pyvisa.resources. TCPIPInstrument method),
94

open () (pyvisa.resources.TCPIPSocket method), 103

open () (pyvisa.resources.USBInstrument method), 113

open () (pyvisa.resources.USBRaw method), 124

open () (pyvisa.resources.VXIBackplane method), 180

open () (pyvisa.resources.VXIInstrument method), 170
(

open () (pyvisa.resources.VXIMemory method), 175

open_bare_resource ()
(pyvisa.highlevel.ResourceManager
59

open_default_resource_manager ()
(pyvisa.highlevel.VisaLibraryBase method), 47

open_resource () (pyvisa.highlevel. ResourceManager
method), 59

out_16 () (pyvisa.highlevel.VisaLibraryBase method),
48

out_32 () (pyvisa.highlevel.VisaLibraryBase method),
48

out_64 () (pyvisa.highlevel.VisaLibraryBase method),
48

out_8 () (pyvisa.highlevel VisaLibraryBase method),
48

method),

P

Parity (class in pyvisa.constants), 183

parity (pyvisa.resources.Seriallnstrument attribute),
84

parse_resource () (pyvisa.highlevel.VisaLibraryBase
method), 49

parse_resource_extended ()
(pyvisa.highlevel.VisaLibraryBase method), 49

pass_control () (pyvisa.resources.GPIBInstrument

peek_64 () (pyvisa.highlevel.VisaLibraryBase
method), 50

peek_8 () (pyvisa.highlevel. VisaLibraryBase method),
50

poke () (pyvisa.highlevel.VisaLibraryBase method), 50

poke_16 () (pyvisa.highlevel.VisaLibraryBase
method), 51

poke_32() (pyvisa.highlevel.VisaLibraryBase
method), 51

poke_64 () (pyvisa.highlevel.VisaLibraryBase
method), 51

poke_8 () (pyvisa.highlevel. VisaLibraryBase method),
51

primary_address (pyvisa.resources.GPIBInstrument
attribute), 134
primary_address
attribute), 146
protocol4d882_strs
attribute), 184
pxi (pyvisa.constants.InterfaceType attribute), 184
PXIInstrument (class in pyvisa.resources), 154
PXIMemory (class in pyvisa.resources), 160
pyvisa.constants (module), 183

Q

query ()

(pyvisa.resources.GPIBInterface

(pyvisa.constants.IOProtocol

(pyvisa.resources.GPIBInstrument method),

134

query () (pyvisa.resources.MessageBasedResource

method), 68

(pyvisa.resources.Seriallnstrument method),

84

query () (pyvisa.resources. TCPIPInstrument method),
94

query () (pyvisa.resources. TCPIPSocket method), 103

query () (pyvisa.resources.USBInstrument method),
114

query () (pyvisa.resources.USBRaw method), 124

query_ascii_values ()
(pyvisa.resources.GPIBInstrument
135

query_ascii_values|()
(pyvisa.resources.MessageBasedResource
method), 68

query_ascii_values()
(pyvisa.resources.Seriallnstrument method), 84

query_ascii_values|()

query ()

method),

method), 134 (pyvisa.resources. TCPIPInstrument method),
pass_control () (pyvisa.resources.GPIBInterface 94
method), 145 query_ascii_values|()
peek () (pyvisa.highlevel.VisaLibraryBase method), 49 (pyvisa.resources. TCPIPSocket method),
peek_16() (pyvisa.highlevel. VisaLibraryBase 103
method), 50 query_ascii_values ()
peek_32 () (pyvisa.highlevel.VisaLibraryBase (pyvisa.resources. USBInstrument method),
method), 50 114
204 Index

PyVISA Documentation, Release 1.10.1

query_ascii_values ()
(pyvisa.resources.USBRaw method), 124

query_binary_values ()
(pyvisa.resources.GPIBInstrument
135

query_binary_values ()
(pyvisa.resources.MessageBasedResource
method), 68

query_binary_values ()
(pyvisa.resources.Seriallnstrument method), 84

query_binary_values ()
(pyvisa.resources. TCPIPInstrument
94

query_binary_values ()
(pyvisa.resources. TCPIPSocket
104

query_binary_values ()
(pyvisa.resources. USBInstrument
114

query_binary_values ()
(pyvisa.resources.USBRaw method), 124

query_delay, 14

query_delay (pyvisa.resources.GPIBInstrument at-
tribute), 136

query_delay (pyvisa.resources.MessageBasedResource
attribute), 69

query_delay (pyvisa.resources.Seriallnstrument at-
tribute), 85

query_delay (pyvisa.resources. TCPIPInstrument at-
tribute), 95

query_delay (pyvisa.resources.TCPIPSocket
tribute), 104

query_delay (pyvisa.resources.USBInstrument
attribute), 115

query_delay (pyvisa.resources.USBRaw attribute),

method),

method),

method),

method),

at-

125

query_values () (pyvisa.resources.GPIBInstrument
method), 136

query_values () (pyvisa.resources.MessageBasedResource
method), 69

query_values () (pyvisa.resources.Seriallnstrument
method), 85

query_values () (pyvisa.resources.TCPIPInstrument
method), 95

query_values () (pyvisa.resources. TCPIPSocket
method), 104

query_values ()
method), 115

query_values ()
method), 125

(pyvisa.resources. USBInstrument

(pyvisa.resources.USBRaw

R

read () (pyvisa.highlevel. VisaLibraryBase method), 52

read () (pyvisa.resources.GPIBInstrument method),
136

read () (pyvisa.resources.MessageBasedResource
method), 69

read () (pyvisa.resources.Seriallnstrument method), 85

read () (pyvisa.resources.TCPIPInstrument method),
95

read () (pyvisa.resources. TCPIPSocket method), 104

read () (pyvisa.resources.USBInstrument method), 115

read () (pyvisa.resources.USBRaw method), 125

read_ascii_values ()
(pyvisa.resources.GPIBInstrument
136

read_ascii_values()
(pyvisa.resources.MessageBasedResource
method), 69

read_ascii_values ()
(pyvisa.resources.Seriallnstrument method), 85

read_ascii_values()
(pyvisa.resources. TCPIPInstrument
95

read_ascii_values ()
(pyvisa.resources. TCPIPSocket
105

read_ascii_values()
(pyvisa.resources.USBInstrument
115

read_ascii_values ()
method), 125

read_asynchronously ()
(pyvisa.highlevel.VisaLibraryBase method), 52

read_binary_values|()
(pyvisa.resources.GPIBInstrument
136

read_binary_values()
(pyvisa.resources.MessageBasedResource
method), 69

read_binary_values ()

(pyvisa.resources.Seriallnstrument method), 86

read_binary_values()
(pyvisa.resources. TCPIPInstrument
96

read_binary_values ()
(pyvisa.resources. TCPIPSocket
105

read_binary_values()
(pyvisa.resources.USBInstrument
115

read_binary_values ()
(pyvisa.resources.USBRaw method), 126

read_bytes () (pyvisa.resources.GPIBInstrument
method), 137

method),

method),

method),

method),

(pyvisa.resources. USBRaw

method),

method),

method),

method),

read_bytes () (pyvisa.resources.MessageBasedResource

method), 70

Index

205

PyVISA Documentation, Release 1.10.1

read_bytes () (pyvisa.resources.Seriallnstrument
method), 86
read_bytes () (pyvisa.resources. TCPIPInstrument
method), 96
read_bytes ()
method), 105
read_bytes ()
method), 116
read_bytes () (pyvisa.resources.USBRaw method),
126
read_memory ()
method), 52
read_memory () (pyvisa.resources.Firewirelnstrument
method), 151
read_memory ()
method), 158
read_memory ()

method), 163

(pyvisa.resources. TCPIPSocket

(pyvisa.resources.USBInstrument

(pyvisa.highlevel. VisaLibraryBase

(pyvisa.resources. PXIInstrument

(pyvisa.resources.PXIMemory

read_termination (pyvisa.resources.Seriallnstrument
attribute), 86

read_termination (pyvisa.resources. TCPIPInstrument

attribute), 97
read_termination
attribute), 106
read_termination (pyvisa.resources.USBInstrument
attribute), 116
read_termination (pyvisa.resources.USBRaw at-
tribute), 127
read_termination_context ()
(pyvisa.resources.GPIBInstrument
137
read_termination_context ()
(pyvisa.resources.MessageBasedResource
method), 70
read_termination_context ()
(pyvisa.resources.Seriallnstrument method), 87

(pyvisa.resources. TCPIPSocket

method),

read_memory () (pyvisa.resources.RegisterBasedResourceead_termination_context ()

method), 77
read_memory ()
method), 175
read_raw () (pyvisa.resources.GPIBInstrument
method), 137
read_raw () (pyvisa.resources.MessageBasedResource
method), 70
read_raw ()
method), 86
read_raw () (pyvisa.resources. TCPIPInstrument
method), 96
read_raw () (pyvisa.resources. TCPIPSocket method),
105
read_raw ()
method), 116
read_raw () (pyvisa.resources.USBRaw method), 126

(pyvisa.resources.VXIMemory

(pyvisa.resources.Seriallnstrument

(pyvisa.resources.USBInstrument

read_stb () (pyvisa.highlevel.VisaLibraryBase
method), 52
read_stb () (pyvisa.resources.GPIBInstrument

method), 137

read_stb () (pyvisa.resources.MessageBasedResource
method), 70

read_stb ()
method), 86

read_stb () (pyvisa.resources. TCPIPInstrument
method), 97

read_stb () (pyvisa.resources. TCPIPSocket method),
106

read_stb ()
method), 116

read_stb () (pyvisa.resources.USBRaw method), 127

(pyvisa.resources.Seriallnstrument

(pyvisa.resources.USBInstrument

read_termination (pyvisa.resources.GPIBInstrument

attribute), 137

read_termination (pyvisa.resources.MessageBasedResource

attribute), 70

(pyvisa.resources. TCPIPInstrument method),
97

read_termination_context ()
(pyvisa.resources. TCPIPSocket
106

read_termination_context ()
(pyvisa.resources.USBInstrument
116

read_termination_context ()
(pyvisa.resources.USBRaw method), 127

read_to_file () (pyvisa.highlevel.VisaLibraryBase
method), 53

read_values () (pyvisa.resources.GPIBInstrument
method), 137

method),

method),

read_values () (pyvisa.resources.MessageBasedResource

method), 70
read_values ()
method), 87
read_values () (pyvisa.resources.TCPIPInstrument
method), 97
read_values ()
method), 106
read_values ()

(pyvisa.resources.Seriallnstrument

(pyvisa.resources. TCPIPSocket

(pyvisa.resources.USBInstrument

method), 116
read_values () (pyvisa.resources.USBRaw method),
127

register () (pyvisa.resources. Firewirelnstrument
class method), 152

register () (pyvisa.resources.GPIBInstrument class
method), 137

register () (pyvisa.resources.GPIBInterface class
method), 146

register () (pyvisa.resources.MessageBasedResource

class method), 71

register () (pyvisa.resources.PXIInstrument class

206

Index

PyVISA Documentation, Release 1.10.1

method), 158

register () (pyvisa.resources.PXIMemory
method), 164

register () (pyvisa.resources.RegisterBasedResource
class method), 77

class

register () (pyvisa.resources.Resource class
method), 63

register () (pyvisa.resources.Seriallnstrument class
method), 87

register () (pyvisa.resources. TCPIPInstrument class
method), 97

register () (pyvisa.resources. TCPIPSocket class

method), 106

register () (pyvisa.resources.USBInstrument class
method), 117

register () (pyvisa.resources.USBRaw class method),
127

register () (pyvisa.resources.VXIBackplane class
method), 181

register () (pyvisa.resources.VXIInstrument class
method), 170

register () (pyvisa.resources.VXIMemory class
method), 176

RegisterBasedResource (class in

pyvisa.resources), 74

remote_enabled (pyvisa.resources.GPIBInstrument
attribute), 137

remote_enabled (pyvisa.resources.GPIBInterface at-
tribute), 146

replace_char (pyvisa.resources.Seriallnstrument at-
tribute), 87

Resource (class in pyvisa.resources), 60

resource_class (pyvisa.resources.Firewirelnstrument
attribute), 152

resource_class (pyvisa.resources.GPIBInstrument
attribute), 138

resource_class (pyvisa.resources.GPIBInterface at-
tribute), 146

resource_class (pyvisa.resources.USBInstrument
attribute), 117

resource_class
tribute), 127

resource_class (pyvisa.resources.VXIBackplane at-
tribute), 181

resource_class (pyvisa.resources.VXlInstrument at-
tribute), 170

resource_class (pyvisa.resources.VXIMemory at-
tribute), 176

resource_info (pyvisa.resources.Firewirelnstrument
attribute), 152

resource_info (pyvisa.resources.GPIBInstrument
attribute), 138

resource_info (pyvisa.resources.GPIBInterface at-
tribute), 146

(pyvisa.resources.USBRaw at-

resource_info (pyvisa.resources.MessageBasedResource

attribute), 71
resource_info (pyvisa.resources.PXIInstrument at-
tribute), 158
resource_info
attribute), 164

(pyvisa.resources.PXIMemory

resource_info (pyvisa.resources.RegisterBasedResource

attribute), 77

resource_info
tribute), 63

resource_info (pyvisa.resources.Seriallnstrument
attribute), 87

resource_info (pyvisa.resources.TCPIPInstrument
attribute), 97

resource_info (pyvisa.resources. TCPIPSocket at-
tribute), 106

resource_info (pyvisa.resources.USBInstrument at-
tribute), 117

resource_info
tribute), 127

resource_info (pyvisa.resources.VXIBackplane at-
tribute), 181

(pyvisa.resources.Resource at-

(pyvisa.resources.USBRaw at-

resource_class (pyvisa.resources.MessageBasedResoureesource_info (pyvisa.resources.VXIInstrument at-

attribute), 71

resource_class (pyvisa.resources. PXIInstrument at-
tribute), 158

resource_class (pyvisa.resources.PXIMemory at-
tribute), 164

tribute), 170
resource_info
attribute), 176

resource_info () (pyvisa.highlevel. ResourceManager
method), 60

(pyvisa.resources.VXIMemory

resource_class (pyvisa.resources.RegisterBasedResourcesour ce_manager (pyvisa.highlevel.VisaLibraryBase

attribute), 77
resource_class
tribute), 63
resource_class (pyvisa.resources.Seriallnstrument
attribute), 87
resource_class (pyvisa.resources.TCPIPInstrument
attribute), 97
resource_class (pyvisa.resources.TCPIPSocket at-
tribute), 106

(pyvisa.resources.Resource at-

attribute), 53
resource_manufacturer_name
(pyvisa.resources. Firewirelnstrument
tribute), 152
resource_manufacturer_name
(pyvisa.resources.GPIBInstrument
138
resource_manufacturer_name
(pyvisa.resources.GPIBInterface

at-

attribute),

attribute),

Index

207

PyVISA Documentation, Release 1.10.1

146
resource_manufacturer_name

(pyvisa.resources.MessageBasedResource

attribute), 71
resource_manufacturer_name

(pyvisa.resources.PXIInstrument attribute),
158

resource_manufacturer_name
(pyvisa.resources.PXIMemory attribute),

164
resource_manufacturer_name
(pyvisa.resources.RegisterBasedResource
attribute), 77
resource_manufacturer_name
(pyvisa.resources.Resource attribute), 63
resource_manufacturer_name
(pyvisa.resources.Seriallnstrument
87
resource_manufacturer_name
(pyvisa.resources. TCPIPInstrument attribute),
97

resource_manufacturer_name

attribute),

(pyvisa.resources. TCPIPSocket attribute),
106

resource_manufacturer_name
(pyvisa.resources.USBInstrument attribute),

117

resource_manufacturer_name
(pyvisa.resources.USBRaw attribute), 127

resource_manufacturer_name
(pyvisa.resources.VXIBackplane
181

resource_manufacturer_name
(pyvisa.resources.VXIInstrument
170

resource_manufacturer_name
(pyvisa.resources.VXIMemory
176

resource_name (pyvisa.resources.Firewirelnstrument
attribute), 152

resource_name (pyvisa.resources.GPIBInstrument
attribute), 138

resource_name (pyvisa.resources.GPIBInterface at-
tribute), 147

attribute),

attribute),

attribute),

resource_name (pyvisa.resources.MessageBasedResource

attribute), 71
resource_name (pyvisa.resources.PXIInstrument at-
tribute), 158
resource_name
attribute), 164

(pyvisa.resources.PXIMemory

resource_name (pyvisa.resources.RegisterBasedResource

attribute), 77
resource_name
tribute), 63

(pyvisa.resources.Resource at-

resource_name (pyvisa.resources.Seriallnstrument
attribute), 87

resource_name (pyvisa.resources.TCPIPInstrument
attribute), 97

resource_name (pyvisa.resources.TCPIPSocket at-
tribute), 106

resource_name (pyvisa.resources.USBInstrument at-
tribute), 117

resource_name
tribute), 127

resource_name (pyvisa.resources.VXIBackplane at-
tribute), 181

resource_name (pyvisa.resources.VXlinstrument at-
tribute), 170

resource_name
attribute), 176

ResourcelInfo (class in pyvisa.highlevel), 58

ResourceManager (class in pyvisa.highlevel), 58

rio (pyvisa.constants.InterfaceType attribute), 184

rsnrp (pyvisa.constants.InterfaceType attribute), 184

S

secondary_address

(pyvisa.resources.USBRaw at-

(pyvisa.resources.VXIMemory

(pyvisa.resources.GPIBInstrument attribute),
138

secondary_address
(pyvisa.resources.GPIBlInterface attribute),

147
send_command () (pyvisa.resources.GPIBInstrument
method), 138
send_command ()
method), 147
send_end, 14
send_end (pyvisa.resources.GPIBInstrument
tribute), 138
send_end (pyvisa.resources.GPIBInterface attribute),

(pyvisa.resources.GPIBInterface

at-

147

send_end (pyvisa.resources.Seriallnstrument at-
tribute), 88

send_end (pyvisa.resources. TCPIPInstrument at-

tribute), 97
send_end (pyvisa.resources.USBInstrument attribute),
117
send_end (pyvisa.resources.VXIinstrument attribute),
170
send_ifc() (pyvisa.resources.GPIBInstrument
method), 139
send_1ifc ()
method), 147
serial_number (pyvisa.resources.USBInstrument at-
tribute), 117
serial_number
tribute), 127
SerialInstrument (class in pyvisa.resources), 79

(pyvisa.resources.GPIBInterface

(pyvisa.resources. USBRaw at-

208

Index

PyVISA Documentation, Release 1.10.1

SerialTermination (class in pyvisa.constants), 183

session (pyvisa.highlevel. ResourceManager attribute),
60

session (pyvisa.resources.Firewirelnstrument at-
tribute), 152

session (pyvisa.resources.GPIBInstrument attribute),
139

session (pyvisa.resources.GPIBInterface attribute),
147

session (pyvisa.resources.MessageBasedResource at-
tribute), 71

session (pyvisa.resources.PXIInstrument attribute),
159

session (pyvisa.resources.PXIMemory attribute), 164

session (pyvisa.resources.RegisterBasedResource at-
tribute), 77

session (pyvisa.resources.Resource attribute), 64

session (pyvisa.resources.Seriallnstrument attribute),
88

session (pyvisa.resources. TCPIPInstrument attribute),
98

session (pyvisa.resources. TCPIPSocket attribute), 107

session (pyvisa.resources.USBInstrument attribute),
117

session (pyvisa.resources. USBRaw attribute), 128

session (pyvisa.resources.VXIBackplane attribute),
181

session (pyvisa.resources.VXIInstrument attribute),
171

session (pyvisa.resources.VXIMemory attribute), 176

set_attribute () (pyvisa.highlevel.VisaLibraryBase
method), 53

set_buffer ()
method), 53

set_visa_attribute()
(pyvisa.resources.Firewirelnstrument method),
152

set_visa_attribute()

(pyvisa.highlevel.VisaLibraryBase

(pyvisa.resources.GPIBInstrument method),
139

set_visa_attribute()
(pyvisa.resources.GPIBInterface method),

147

set_visa_attribute()
(pyvisa.resources.MessageBasedResource
method), 71

set_visa_attribute ()
(pyvisa.resources. PXIInstrument
159

set_visa_attribute ()
(pyvisa.resources.PXIMemory method), 164

set_visa_attribute ()
(pyvisa.resources.RegisterBasedResource
method), 78

method),

set_visa_attribute ()
(pyvisa.resources.Resource method), 64

set_visa_attribute()
(pyvisa.resources.Seriallnstrument method), 88

set_visa_attribute ()
(pyvisa.resources. TCPIPInstrument
98

set_visa_attribute()
(pyvisa.resources. TCPIPSocket
107

set_visa_attribute ()
(pyvisa.resources. USBInstrument
117

set_visa_attribute()
(pyvisa.resources.USBRaw method), 128

set_visa_attribute ()

method),

method),

method),

(pyvisa.resources.VXIBackplane method),
181

set_visa_attribute()
(pyvisa.resources.VXIInstrument method),

171

set_visa_attribute ()
(pyvisa.resources.VXIMemory method), 176

shared_lock (pyvisa.constants.AccessModes at-
tribute), 183

source_increment (pyvisa.resources.PXIInstrument
attribute), 159

source_increment
attribute), 165

source_increment (pyvisa.resources.VXlInstrument
attribute), 171

source_increment
attribute), 177

space (pyvisa.constants.Parity attribute), 183

spec_version (pyvisa.resources.Firewirelnstrument
attribute), 153

spec_version (pyvisa.resources.GPIBInstrument at-
tribute), 139

spec_version (pyvisa.resources.GPIBInterface at-
tribute), 148

(pyvisa.resources.PXIMemory

(pyvisa.resources.VXIMemory

spec_version (pyvisa.resources.MessageBasedResource

attribute), 71

spec_version (pyvisa.resources.PXIInstrument at-
tribute), 159

spec_version (pyvisa.resources.PXIMemory at-
tribute), 165

spec_version (pyvisa.resources.RegisterBasedResource

attribute), 78

spec_version (pyvisa.resources.Resource attribute),
64

spec_version (pyvisa.resources.Seriallnstrument at-
tribute), 88

spec_version (pyvisa.resources.TCPIPInstrument
attribute), 98

Index

209

PyVISA Documentation, Release 1.10.1

spec_version (pyvisa.resources. TCPIPSocket at-
tribute), 107
spec_version (pyvisa.resources.USBInstrument at-
tribute), 118
spec_version (pyvisa.resources.USBRaw attribute),
128
spec_version (pyvisa.resources.VXIBackplane at-
tribute), 181
spec_version (pyvisa.resources.VXlInstrument at-
tribute), 171
spec_version (pyvisa.resources.VXIMemory
tribute), 177
status_description ()
(pyvisa.highlevel.VisaLibraryBase method), 53
StatusCode (class in pyvisa.constants), 184
stb (pyvisa.resources.GPIBInstrument attribute), 139
stb (pyvisa.resources.MessageBasedResource
tribute), 72
stb (pyvisa.resources.Seriallnstrument attribute), 88
stb (pyvisa.resources. TCPIPInstrument attribute), 98
stb (pyvisa.resources. TCPIPSocket attribute), 107
stb (pyvisa.resources.USBInstrument attribute), 118
stb (pyvisa.resources.USBRaw attribute), 128
stop_bits (pyvisa.resources.Seriallnstrument
tribute), 88
StopBits (class in pyvisa.constants), 183
success (pyvisa.constants.StatusCode attribute), 188
success_device_not_present
(pyvisa.constants.StatusCode
188
success_event_already_disabled
(pyvisa.constants.StatusCode
188
success_event_already_enabled
(pyvisa.constants.StatusCode
188
success_max_count_read
(pyvisa.constants.StatusCode
188
success_nested_exclusive
(pyvisa.constants.StatusCode
188
success_nested_shared
(pyvisa.constants.StatusCode
188
success_no_more_handler_calls_in_chain
(pyvisa.constants.StatusCode attribute), 189
success_qgueue_already_empty

at-

at-

at-

attribute),

attribute),

attribute),

attribute),

attribute),

attribute),

attribute), 189
success_termination_character_read

(pyvisa.constants.StatusCode attribute), 189
success_trigger_already_mapped

(pyvisa.constants.StatusCode

189

attribute),

T

talker (pyvisa.constants.AddressState attribute), 184

tcpip (pyvisa.constants.InterfaceType attribute), 184

TCPIPInstrument (class in pyvisa.resources), 91

TCPIPSocket (class in pyvisa.resources), 100

terminate () (pyvisa.highlevel.VisaLibraryBase
method), 54

termination_break
(pyvisa.constants.SerialTermination attribute),
183

termination_char (pyvisa.constants.SerialTermination

attribute), 183

timeout (pyvisa.resources.Firewirelnstrument
tribute), 153

timeout (pyvisa.resources.GPIBInstrument attribute),
139

timeout (pyvisa.resources.GPIBInterface attribute),
148

timeout (pyvisa.resources.MessageBasedResource at-
tribute), 72

timeout (pyvisa.resources.PXIInstrument attribute),
159

timeout (pyvisa.resources.PXIMemory attribute), 165

timeout (pyvisa.resources.RegisterBasedResource at-
tribute), 78

timeout (pyvisa.resources.Resource attribute), 64

timeout (pyvisa.resources.Seriallnstrument attribute),
88

timeout (pyvisa.resources. TCPIPInstrument attribute),
98

timeout (pyvisa.resources. TCPIPSocket attribute), 107

timeout (pyvisa.resources.USBInstrument attribute),
118

timeout (pyvisa.resources.USBRaw attribute), 128

timeout (pyvisa.resources.VXIBackplane attribute),
182

timeout (pyvisa.resources.VXIInstrument attribute),
171

timeout (pyvisa.resources.VXIMemory attribute), 177

two (pyvisa.constants.StopBits attribute), 183

at-

(pyvisa.constants.StatusCode attribute), U
189 unaddressed (pyvisa.constants.AddressState at-
success_queue_not_empty tribute), 184
(pyvisa.constants.StatusCode attribute), ypasserted (pyvisa.constants.LineState attribute),
189 184
success_syncronous (pyvisa.constants.StatusCode
210 Index

PyVISA Documentation, Release 1.10.1

uninstall_all_visa_handlers ()
(pyvisa.highlevel.VisaLibraryBase method), 54
uninstall_handler ()
(pyvisa.highlevel.VisaLibraryBase method), 54
uninstall_handler ()
(pyvisa.resources. Firewirelnstrument method),
153
uninstall_handler ()

(pyvisa.resources.GPIBInstrument method),
140

uninstall_handler ()
(pyvisa.resources.GPIBInterface method),

148

uninstall_handler ()
(pyvisa.resources.MessageBasedResource
method), 72

uninstall_handler ()
(pyvisa.resources.PXIInstrument
160

uninstall_handler ()
(pyvisa.resources.PXIMemory method), 165

uninstall_handler ()
(pyvisa.resources.RegisterBasedResource
method), 78

uninstall_handler ()
method), 64

uninstall_handler ()
(pyvisa.resources.Seriallnstrument method), 89

uninstall_handler ()
(pyvisa.resources. TCPIPInstrument
98

uninstall _handler ()
(pyvisa.resources. TCPIPSocket
107

uninstall_handler ()
(pyvisa.resources. USBInstrument
118

uninstall_handler ()
method), 128

uninstall_handler ()

method),

(pyvisa.resources.Resource

method),

method),

method),

(pyvisa.resources.USBRaw

(pyvisa.resources.VXIBackplane method),
182

uninstall_handler ()
(pyvisa.resources.VXIInstrument method),

172
uninstall_handler ()
(pyvisa.resources.VXIMemory method), 177
uninstall_visa_handler ()
(pyvisa.highlevel.VisaLibraryBase method), 54
unknown (pyvisa.constants.InterfaceType attribute), 184
unknown (pyvisa.constants.LineState attribute), 184
unlock () (pyvisa.highlevel VisaLibraryBase method),
54

unlock () (pyvisa.resources. Firewirelnstrument

method), 153

unlock () (pyvisa.resources.GPIBInstrument method),
140

unlock ()
148

unlock () (pyvisa.resources.MessageBasedResource
method), 72

unlock () (pyvisa.resources.PXIInstrument method),
160

unlock () (pyvisa.resources.PXIMemory method), 165

unlock () (pyvisa.resources.RegisterBasedResource
method), 78

unlock () (pyvisa.resources.Resource method), 65

unlock () (pyvisa.resources.Seriallnstrument method),
89

unlock () (pyvisa.resources. TCPIPInstrument
method), 99

unlock () (pyvisa.resources. TCPIPSocket
108

unlock ()
118

unlock () (pyvisa.resources.USBRaw method), 128

unlock () (pyvisa.resources.VXIBackplane method),
182

unlock ()
172

unlock () (pyvisa.resources.VXIMemory method), 177

unmap_address () (pyvisa.highlevel. VisaLibraryBase
method), 55

unmap_trigger () (pyvisa.highlevel VisaLibraryBase
method), 55

usb (pyvisa.constants.InterfaceType attribute), 184

usb_control_in () (pyvisa.highlevel VisaLibraryBase
method), 55

usb_control_out ()
(pyvisa.highlevel.VisaLibraryBase method), 56

usb_control_out ()
(pyvisa.resources. USBInstrument
118

usb_protocol (pyvisa.resources.USBInstrument at-
tribute), 119

usb_protocol (pyvisa.resources.USBRaw attribute),
129

USBInstrument (class in pyvisa.resources), 109

USBRaw (class in pyvisa.resources), 120

usbtmc_vendor (pyvisa.constants.IOProtocol
tribute), 184

(pyvisa.resources.GPIBInterface method),

method),

(pyvisa.resources.USBInstrument method),

(pyvisa.resources.VXIInstrument method),

method),

at-

\Y

values_format (pyvisa.resources.GPIBInstrument
attribute), 140

values_format (pyvisa.resources.MessageBasedResource

attribute), 72

Index

211

PyVISA Documentation, Release 1.10.1

values_format (pyvisa.resources.Seriallnstrument
attribute), 89

values_format (pyvisa.resources.TCPIPInstrument
attribute), 99

values_format (pyvisa.resources. TCPIPSocket at-
tribute), 108

values_format (pyvisa.resources.USBInstrument at-
tribute), 119

values_format
tribute), 129

visa_attributes_classes
(pyvisa.resources. Firewirelnstrument
tribute), 153

visa_attributes_classes

(pyvisa.resources.USBRaw at-

at-

(pyvisa.resources.GPIBInstrument attribute),
140

visa_attributes_classes
(pyvisa.resources.GPIBInterface attribute),

148
visa_attributes_classes
(pyvisa.resources.MessageBasedResource
attribute), 72
visa_attributes_classes

(pyvisa.resources.PXIInstrument attribute),
160

visa_attributes_classes
(pyvisa.resources.PXIMemory attribute),

166

visa_attributes_classes
(pyvisa.resources.RegisterBasedResource
attribute), 78

visa_attributes_classes
(pyvisa.resources.Resource attribute), 65

visa_attributes_classes
(pyvisa.resources.Seriallnstrument
89

visa_attributes_classes
(pyvisa.resources. TCPIPInstrument attribute),
99

visa_attributes_classes

attribute),

(pyvisa.resources. TCPIPSocket attribute),
108

visa_attributes_classes
(pyvisa.resources.USBInstrument attribute),

119
visa_attributes_classes
(pyvisa.resources.USBRaw attribute), 129
visa_attributes_classes

(pyvisa.resources.VXIBackplane attribute),
182

visa_attributes_classes
(pyvisa.resources.VXIInstrument attribute),

172
visa_attributes_classes

(pyvisa.resources.VXIMemory attribute),
178

VisaLibraryBase (class in pyvisa.highlevel), 35

vxi (pyvisa.constants.InterfaceType attribute), 184

vxi_command_query ()
(pyvisa.highlevel.VisaLibraryBase method), 56

VXIBackplane (class in pyvisa.resources), 178

VXIInstrument (class in pyvisa.resources), 166

VXIMemory (class in pyvisa.resources), 172

W

wait_for_srqg() (pyvisa.resources.GPIBInstrument
method), 140
wait_on_event () (pyvisa.highlevel VisaLibraryBase

method), 56
wait_on_event () (pyvisa.resources.Firewirelnstrument
method), 153

wait_on_event () (pyvisa.resources.GPIBInstrument
method), 140
wait_on_event ()
method), 148
wait_on_event () (pyvisa.resources.MessageBasedResource
method), 72
wailt_on_event ()
method), 160
wait_on_event ()

(pyvisa.resources.GPIBInterface

(pyvisa.resources.PXIInstrument

(pyvisa.resources.PXIMemory

method), 166

wait_on_event () (pyvisa.resources.RegisterBasedResource
method), 78

wait_on_event () (pyvisa.resources.Resource
method), 65

wait_on_event () (pyvisa.resources.Seriallnstrument
method), 89

wait_on_event () (pyvisa.resources. TCPIPInstrument
method), 99

wait_on_event () (pyvisa.resources. TCPIPSocket
method), 108
wailt_on_event ()
method), 119
wait_on_event ()
method), 129
wait_on_event ()
method), 182
walt_on_event ()
method), 172
wait_on_event ()
method), 178
warning_configuration_not_loaded
(pyvisa.constants.StatusCode attribute),
189
warning_ext_function_not_implemented
(pyvisa.constants.StatusCode attribute), 189
warning_nonsupported_attribute_state
(pyvisa.constants.StatusCode attribute), 189

(pyvisa.resources.USBInstrument
(pyvisa.resources.USBRaw
(pyvisa.resources.VXIBackplane
(pyvisa.resources.VXIInstrument

(pyvisa.resources.VXIMemory

212

Index

PyVISA Documentation, Release 1.10.1

warning_nonsupported_buffer
(pyvisa.constants.StatusCode
189

warning null_object
(pyvisa.constants.StatusCode
189

warning_gqueue_overflow
(pyvisa.constants.StatusCode
189

warning_unknown_status
(pyvisa.constants.StatusCode
189

write () (pyvisa.highlevel.VisaLibraryBase method),
57

write () (pyvisa.resources.GPIBInstrument method),
140

write () (pyvisa.resources.MessageBasedResource

method), 72

(pyvisa.resources.Seriallnstrument method),

89

write () (pyvisa.resources. TCPIPInstrument method),
99

write () (pyvisa.resources. TCPIPSocket method), 108

write () (pyvisa.resources.USBInstrument method),
119

write () (pyvisa.resources.USBRaw method), 129

write_ascii_values()
(pyvisa.resources.GPIBInstrument
140

write_ascii_values()
(pyvisa.resources.MessageBasedResource
method), 73

write_ascii_values()
(pyvisa.resources.Seriallnstrument method), 89

write_ascii_values()
(pyvisa.resources. TCPIPInstrument
99

write_ascii_values()
(pyvisa.resources. TCPIPSocket
108

write_ascii_values()
(pyvisa.resources.USBInstrument
119

write_ascii_values()
(pyvisa.resources.USBRaw method), 129

write_asynchronously ()
(pyvisa.highlevel.VisaLibraryBase method), 57

write_binary_values ()
(pyvisa.resources.GPIBInstrument
141

write_binary_values ()
(pyvisa.resources.MessageBasedResource
method), 73

write_binary_values ()

attribute),

attribute),

attribute),

attribute),

write ()

method),

method),

method),

method),

method),

(pyvisa.resources.Seriallnstrument method), 90
write_binary_values ()

(pyvisa.resources. TCPIPInstrument method),
100

write_binary_values ()
(pyvisa.resources. TCPIPSocket method),
108

write_binary_values ()
(pyvisa.resources.USBInstrument method),

120

write_binary_values ()
(pyvisa.resources.USBRaw method), 130

write_from_file()
(pyvisa.highlevel.VisaLibraryBase method), 57

write_memory () (pyvisa.highlevel VisaLibraryBase
method), 57

write_memory () (pyvisa.resources.Firewirelnstrument
method), 154

write_memory ()
method), 160

write_memory ()
method), 166

(pyvisa.resources.PXIInstrument

(pyvisa.resources.PXIMemory

write_memory () (pyvisa.resources.RegisterBasedResource

method), 79
write_memory ()
method), 178
write_raw () (pyvisa.resources.GPIBInstrument
method), 141
write_raw () (pyvisa.resources.MessageBasedResource
method), 73
write_raw ()
method), 90
write_raw () (pyvisa.resources. TCPIPInstrument
method), 100
write_raw ()
method), 109
write_raw()
method), 120
(pyvisa.resources.USBRaw method),

(pyvisa.resources.VXIMemory

(pyvisa.resources.Seriallnstrument

(pyvisa.resources. TCPIPSocket
(pyvisa.resources.USBInstrument

write_raw()
130

write_termination
(pyvisa.resources.GPIBInstrument
141

write_termination
(pyvisa.resources.MessageBasedResource
attribute), 74

write_termination
(pyvisa.resources.Seriallnstrument
90

write_termination
(pyvisa.resources. TCPIPInstrument attribute),
100

write_termination (pyvisa.resources. TCPIPSocket
attribute), 109

attribute),

attribute),

Index

213

PyVISA Documentation, Release 1.10.1

write_termination
(pyvisa.resources.USBInstrument attribute),
120

write_termination (pyvisa.resources.USBRaw at-
tribute), 130

write_values () (pyvisa.resources.GPIBInstrument
method), 141

write_values () (pyvisa.resources.MessageBasedResource

method), 74

write_values () (pyvisa.resources.Seriallnstrument
method), 90

write_values () (pyvisa.resources.TCPIPInstrument
method), 100

write_values () (pyvisa.resources. TCPIPSocket
method), 109

write_values () (pyvisa.resources.USBInstrument
method), 120

write_values () (pyvisa.resources.USBRaw
method), 130

X

xoff_char (pyvisa.resources.Seriallnstrument at-
tribute), 90

xon_char (pyvisa.resources.Seriallnstrument at-
tribute), 91

214

Index

	General overview
	User guide
	Advanced topics
	Frequently asked questions
	API

	Python Module Index
	Index

